ono-1301 and cicaprost

ono-1301 has been researched along with cicaprost* in 2 studies

Other Studies

2 other study(ies) available for ono-1301 and cicaprost

ArticleYear
Prostacyclin receptor-independent inhibition of phospholipase C activity by non-prostanoid prostacyclin mimetics.
    British journal of pharmacology, 2001, Volume: 134, Issue:7

    1. Chinese hamster ovary (CHO) cells were transiently transfected with the mouse prostacyclin (mIP) receptor to examine IP agonist-mediated stimulation of [(3)H]-cyclic AMP and [(3)H]-inositol phosphate production. 2. The prostacyclin analogues, cicaprost, iloprost, carbacyclin and prostaglandin E(1), stimulated adenylyl cyclase activity with EC(50) values of 5, 6, 25 and 95 nM, respectively. These IP agonists also stimulated the phospholipase C pathway with 10 - 40 fold lower potency than stimulation of adenylyl cyclase. 3. The non-prostanoid prostacyclin mimetics, octimibate, BMY 42393 and BMY 45778, also stimulated adenylyl cyclase activity, with EC(50) values of 219, 166 and 398 nM, respectively, but failed to stimulate [(3)H]-inositol phosphate production. 4. Octimibate, BMY 42393 and BMY 45778 inhibited iloprost-stimulated [(3)H]-inositol phosphate production in a non-competitive manner. 5. Activation of the endogenously-expressed P(2) purinergic receptor by ATP led to an increase in [(3)H]-inositol phosphate production which was inhibited by the non-prostanoid prostacyclin mimetics in non-transfected CHO cells. Prostacyclin analogues and other prostanoid receptor ligands failed to inhibit ATP-stimulated [(3)H]-inositol phosphate production. 6. A comparison between the IP receptor-specific non-prostanoid ONO-1310 and the structurally-related EP(3) receptor-specific agonist ONO-AP-324, indicated that the inhibitory effect of non-prostanoids was specific for those compounds known to activate IP receptors. 7. The non-prostanoid prostacyclin mimetics also inhibited phospholipase C activity when stimulated by constitutively-active mutant Galpha(q)RC, Galpha(14)RC and Galpha(16)QL transiently expressed in CHO cells. These drugs did not inhibit adenylyl cyclase activity when stimulated by the constitutively-active mutant Galpha(s)QL. 8. These results suggest that non-prostanoid prostacyclin mimetics can specifically inhibit [(3)H]-inositol phosphate production by targeting G(q/11) and/or phospholipase C in CHO cells, and that this effect is independent of IP receptors.

    Topics: Acetates; Adenylyl Cyclases; Alprostadil; Animals; Cell Survival; CHO Cells; Cricetinae; Cyclic AMP; Dose-Response Relationship, Drug; Enzyme Inhibitors; Epoprostenol; Iloprost; Imidazoles; Inositol Phosphates; Oxazoles; Phenoxyacetates; Pyridines; Receptors, Epoprostenol; Receptors, Prostaglandin; Transfection; Tritium; Type C Phospholipases

2001
Non-prostanoid prostacyclin mimetics as neuronal stimulants in the rat: comparison of vagus nerve and NANC innervation of the colon.
    British journal of pharmacology, 2000, Volume: 129, Issue:4

    The spontaneous activity of the rat isolated colon is suppressed by prostacyclin analogues such as cicaprost (IC(50)=4.0 nM). Activation of prostanoid IP(1)-receptors located on NANC inhibitory neurones is involved. However, several non-prostanoids, which show medium to high IP(1) agonist potency on platelet and vascular preparations, exhibit very weak inhibitory activity on the colon. The aim of the study was to investigate this discrepancy. Firstly, we have demonstrated the very high depolarizing potency of cicaprost on the rat isolated vagus nerve (EC(50)=0.23 nM). Iloprost, taprostene and carbacyclin were 7.9, 66, and 81 fold less potent than cicaprost, indicating the presence of IP(1) as opposed to IP(2)-receptors. Three non-prostanoid prostacyclin mimetics, BMY 45778, BMY 42393 and ONO-1301, although much less potent than cicaprost (195, 990 and 1660 fold respectively), behaved as full agonists on the vagus nerve. On re-investigating the rat colon, we found that BMY 45778 (0.1 - 3 microM), BMY 42393 (3 microM) and ONO-1301 (3 microM) behaved as specific IP(1) partial agonists, but their actions required 30 - 60 min to reach steady-state and only slowly reversed on washing. This profile contrasted sharply with the rapid and readily reversible contractions elicited by a related non-prostanoid ONO-AP-324, which is an EP(3)-receptor agonist. The full versus partial agonism of the non-prostanoid prostacyclin mimetics may be explained by the markedly different IP(1) agonist sensitivities of the two rat neuronal preparations. However, the slow kinetics of the non-prostanoids on the NANC system of the colon remain unexplained, and must be taken into account when characterizing neuronal IP-receptors.

    Topics: Acetates; Animals; Colon; Epoprostenol; In Vitro Techniques; Male; Molecular Mimicry; Neuromuscular Depolarizing Agents; Neuromuscular Junction; Oxazoles; Phenoxyacetates; Pyridines; Rats; Rats, Sprague-Dawley; Receptors, Epoprostenol; Receptors, Prostaglandin; Vagus Nerve

2000