omega-agatoxin-iva has been researched along with ziconotide* in 13 studies
13 other study(ies) available for omega-agatoxin-iva and ziconotide
Article | Year |
---|---|
Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: prevention of Aβ-induced synaptic deficits by calcium channel blockers.
Alzheimer's disease is accompanied by increased brain levels of soluble amyloid-β (Aβ) oligomers. It has been suggested that oligomers directly impair synaptic function, thereby causing cognitive deficits in Alzheimer's disease patients. Recently, it has been shown that synthetic Aβ oligomers directly modulate P/Q-type calcium channels, possibly leading to excitotoxic cascades and subsequent synaptic decline. Using whole-cell recordings we studied the modulation of recombinant presynaptic calcium channels in HEK293 cells after application of a stable Aβ oligomer preparation (Aβ1-42 globulomer). Aβ globulomer shifted the half-activation voltage of P/Q-type and N-type calcium channels to more hyperpolarized values (by 11.5 and 7.5 mV). Application of non-aggregated Aβ peptides had no effect. We then analyzed the potential of calcium channel blockers to prevent Aβ globulomer-induced synaptic decline in hippocampal slice cultures. Specific block of P/Q-type or N-type calcium channels with peptide toxins completely reversed Aβ globulomer-induced deficits in glutamatergic neurotransmission. Two state-dependent low molecular weight P/Q-type and N-type calcium channel blockers also protected neurons from Aβ-induced alterations. On the contrary, inhibition of L-type calcium channels failed to reverse the deficit. Our data show that Aβ globulomer directly modulates recombinant P/Q-type and N-type calcium channels in HEK293 cells. Block of presynaptic calcium channels with both state-dependent and state-independent modulators can reverse Aβ-induced functional deficits in synaptic transmission. These findings indicate that presynaptic calcium channel blockers may be a therapeutic strategy for the treatment of Alzheimer's disease. Topics: Amyloid beta-Peptides; Animals; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Channels, N-Type; HEK293 Cells; Hippocampus; Humans; omega-Agatoxin IVA; omega-Conotoxins; Peptide Fragments; Rats; Rats, Wistar; Synapses | 2013 |
Medullary N-type and P/Q-type calcium channels contribute to neuropathy-induced allodynia.
The present study was designed to determine the contribution of N-type, P/Q-type and L-type calcium channels in the rostral ventromedial medulla to tactile allodynia following peripheral nerve injury. L5/L6 spinal nerve ligation in rats produced tactile allodynia, which was dose-dependently inhibited by intrarostral ventromedial medulla microinjection of the N-type calcium channel antagonist omega-conotoxin MVIIA. Similarly, intrarostral ventromedial medulla microinjection of the P/Q-type calcium channel antagonist omega-agatoxin IVA inhibited spinal nerve ligation-induced tactile allodynia, whereas intrarostral ventromedial medulla microinjection of the L-type calcium channel antagonist nimodipine had no effect. These results demonstrate that N-type and P/Q-type calcium channels in the rostral ventromedial medulla contribute to tactile allodynia following peripheral neuropathy, likely via neurotransmitter-mediated activation of descending facilitatory systems from the rostral ventromedial medulla. Topics: Animals; Calcium Channel Blockers; Calcium Channels, N-Type; Hyperalgesia; Ligation; Male; Medulla Oblongata; Microinjections; Neuralgia; omega-Agatoxin IVA; omega-Conotoxins; Rats; Rats, Sprague-Dawley; Spinal Nerves; Touch | 2005 |
SO-3, a new O-superfamily conopeptide derived from Conus striatus, selectively inhibits N-type calcium currents in cultured hippocampal neurons.
Whole-cell currents in cultured hippocampal neurons were recorded to investigate the effects of SO-3, a new O-superfamily conopeptide derived from Conus striatus, on voltage-sensitive channels. SO-3 had no effect on voltage-sensitive sodium currents, delayed rectifier potassium currents, and transient outward potassium currents. Similar to the selective N-type calcium channel blocker omega-conotoxin MVIIA (MVIIA), SO-3 could concentration-dependently inhibit the high voltage-activated (HVA) calcium currents (I(Ca)). MVIIA(3 microM), 10 microM nimodipine, and 0.5 microM omega-agatoxin IVA (Aga) could selectively block the N-, L-, and P/Q-type I(Ca), which contributed approximately 32, approximately 38, and approximately 21% of the HVA currents in hippocampal neurons, respectively. About 31% of the total HVA currents were inhibited by 3 microM SO-3. SO-3 (3 microM) and 3 microM MVIIA inhibited the overlapping components of HVA currents, whereas no overlapping component was inhibited by 3 microM SO-3 and 10 microM nimodipine, or by 3 microM SO-3 and 0.5 microM Aga. Also, 3 microM SO-3 had no effect on R-type currents. SO-3 had less inhibitory effects on non-N-type HVA currents than MVIIA at higher concentrations (30 and 100 microM). The inhibitory effects of SO-3 and MVIIA on HVA currents were almost fully reversible. However, the recovery from block by MVIIA was more rapid than recovery from block by SO-3. It is concluded that SO-3 is a new omega-conotoxin selectively targeting N-type voltage-sensitive calcium channels. Considering the significance of N-type calcium channels for pain transduction, SO-3 may have therapeutic potential as a novel analgesic agent. Topics: Amino Acid Sequence; Animals; Calcium Channel Blockers; Calcium Channels, N-Type; Cells, Cultured; Hippocampus; Membrane Potentials; Molecular Sequence Data; Neurons; Nimodipine; omega-Agatoxin IVA; omega-Conotoxins; Patch-Clamp Techniques; Peptides; Rats; Rats, Wistar | 2005 |
Depolarization-induced calcium influx in rat mesenteric small arterioles is mediated exclusively via mibefradil-sensitive calcium channels.
1. In this study, intracellular Ca(2+) was measured as the Fura-2 ratio (R) of fluorescence excited at 340 and 380 nm (F(340)/F(380)) in nonpressurized rat mesenteric small arterioles ( (lumen diameter) 10-25 microm). 2. The response to depolarization using 75 mm KCl was an increase in R from a baseline of 0.96+/-0.01 ([Ca(2+)](i) approximately 74 nm) to 1.04+/-0.01 ( approximately 128 nm) (n=80). The response to 75 mm K(+) was reversibly abolished in Ca(2+)-free physiological saline solution, whereas phentolamine (10 microm) or tetrodotoxin (1 microm) had no effects. LaCl(3) (200 microm) inhibited 61+/-9% of the response. 3. A [K(+)]-response curve indicated that the Ca(2+) response was activated between 15 and 25 mm K(+). The data suggest that the Ca(2+) response was caused by the activation of voltage-dependent Ca(2+) channels. 4. Mibefradil use dependently inhibited the Ca(2+) response to 75 mm K(+) by 29+/-2% (100 nm), 73+/-7% (1 microm) or 89+/-7% (10 microm). Pimozide (500 nm) use dependently inhibited the Ca(2+) response by 85+/-1%. 5. Nifedipine (1 microm) inhibited the Ca(2+) response to 75 mm K(+) by 41+/-12%. The response was not inhibited by calciseptine (500 nm), omega-agatoxin IVA (100 nm), omega-conotoxin MVIIA (500 nm), or SNX-482 (100 nm). 6. Using reverse transcriptase-polymerase chain reaction, it was shown that neither Ca(V)2.1a (P-type) nor Ca(V)2.1b (Q-type) voltage-dependent Ca(2+) channels were expressed in mesenteric arterioles, whereas the Ca(V)3.1 (T-type) channel was expressed. Furthermore, no amplification products were detected when using specific primers for the beta(1b), beta(2), or beta(3) auxiliary subunits of high-voltage-activated Ca(2+) channels. 7. The results suggest that the voltage-dependent Ca(2+) channel activated by sustained depolarization in mesenteric arterioles does not classify as any of the high-voltage-activated channels (L-, P/Q-, N-, or R-type), but is likely to be a T-type channel. The possibility that the sustained Ca(2+) influx observed was the result of a T-type window current is discussed. Topics: Animals; Arterioles; Blotting, Southern; Calcium; Calcium Channels; Denmark; Elapid Venoms; Fluorescence; Fura-2; Gene Expression; Lanthanum; Male; Membrane Potentials; Mesenteric Arteries; Mibefradil; Muscle, Smooth, Vascular; Nifedipine; omega-Agatoxin IVA; omega-Conotoxins; Phentolamine; Pimozide; Potassium Chloride; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; Sodium-Calcium Exchanger; Solutions; Spider Venoms; Tetrodotoxin | 2004 |
An R-type Ca(2+) current in neurohypophysial terminals preferentially regulates oxytocin secretion.
Multiple types of voltage-dependent Ca(2+) channels are involved in the regulation of neurotransmitter release (Tsien et al., 1991; Dunlap et al., 1995). In the nerve terminals of the neurohypophysis, the roles of L-, N-, and P/Q-type Ca(2+) channels in neuropeptide release have been identified previously (Wang et al., 1997a). Although the L- and N-type Ca(2+) currents play equivalent roles in both vasopressin and oxytocin release, the P/Q-type Ca(2+) current only regulates vasopressin release. An oxytocin-release and Ca(2+) current component is resistant to the L-, N-, and P/Q-type Ca(2+) channel blockers but is inhibited by Ni(2+). A new polypeptide toxin, SNX-482, which is a specific alpha(1E)-type Ca(2+) channel blocker (Newcomb et al., 1998), was used to characterize the biophysical properties of this resistant Ca(2+) current component and its role in neuropeptide release. This resistant component was dose dependently inhibited by SNX-482, with an IC(50) of 4.1 nM. Furthermore, SNX-482 did not affect the other Ca(2+) current types in these CNS terminals. Like the N- and P/Q-type Ca(2+) currents, this SNX-482-sensitive transient Ca(2+) current is high-threshold activated and shows moderate steady-state inactivation. At the same concentrations, SNX-482 blocked the component of oxytocin, but not of vasopressin, release that was resistant to the other channel blockers, indicating a preferential role for this type of Ca(2+) current in oxytocin release from neurohypophysial terminals. Our results suggest that an alpha(1E) or "R"-type Ca(2+) channel exists in oxytocinergic nerve terminals and, thus, functions in controlling only oxytocin release from the rat neurohypophysis. Topics: Animals; Arginine Vasopressin; Calcium Channel Blockers; Calcium Channels, R-Type; Membrane Potentials; Nerve Endings; Nicardipine; omega-Agatoxin IVA; omega-Conotoxins; Oxytocin; Patch-Clamp Techniques; Peptides; Pituitary Gland, Posterior; Rats; Spider Venoms | 1999 |
Differential effects of intrathecally administered N- and P-type voltage-sensitive calcium channel blockers upon two models of experimental mononeuropathy in the rat.
We investigated the effects of intrathecally administered N-type and P-type voltage-sensitive calcium channel (VSCC) blockers on the level of thermal hyperalgesia in two neuropathic pain models: the chronic constriction injury (CCI) model and the partial sciatic nerve injury (PSNI) model. N-type, but not P-type, VSCC blockers attenuated the level of thermal hyperalgesia induced by CCI in a dose-dependent manner. In the PSNI model, both N-type and P-type VSCC blockers had no effect on thermal hyperalgesia. This suggests that some types of neuropathic pain may be treatable with N-type VSCC blockers. Topics: Analysis of Variance; Animals; Calcium Channel Blockers; Constriction; Disease Models, Animal; Injections, Spinal; Male; Membrane Potentials; Neuralgia; Neuroprotective Agents; omega-Agatoxin IVA; omega-Conotoxin GVIA; omega-Conotoxins; Peptides; Rats; Rats, Sprague-Dawley; Sciatic Nerve; Spider Venoms | 1998 |
Blockade of N- and P/Q-type calcium channels reduces the secondary heat hyperalgesia induced by acute inflammation.
High voltage calcium channels are implicated in nociceptive transmission after nerve injury, capsaicin or formalin injection. The purpose of this study was to investigate the role of calcium channels in secondary heat hyperalgesia associated with acute joint inflammation. After induction of acute inflammation (knee joint injection of kaolin and carrageenan), decreased paw withdrawal latency (PWL) to radiant heat (i.e., secondary heat hyperalgesia), increased guarding of the limb and increased joint circumference occurs. Spinal administration (through a microdialysis fiber placed in dorsal horn) of an N-type calcium channel blocker (MVIIA, SNX 111, ziconotide, 0.001-0.1 mM), before induction of inflammation, prevents the decrease in PWL. Treatment with SNX 111 4 hr after inflammation reverses heat hyperalgesia. A small reduction in spontaneous pain-related behaviors (guarding of the limb) occurs after pre- or post-treatment with SNX 111. Spinal blockade of P/Q-type calcium channels (with omega-agatoxin IVA) had no effect on the decrease in PWL to radiant heat when administered after induction of inflammation. However, pre-treatment with omega-agatoxin IVA prevents secondary heat hyperalgesia. omega-Agatoxin IVA has no effect on spontaneous pain-related behaviors whether administered before or after induction of inflammation. In contrast, pre or post-treatment with nifedipine (L-type calcium channel blocker, 0.01-1.0 mM), had no effect on heat hyperalgesia or spontaneous pain-related behaviors induced by acute inflammation. There were no differences in joint circumference between groups with any treatment. Thus, N-type calcium channels contribute to both the development and maintenance of secondary heat hyperalgesia while P-type calcium channels are only involved during development of hyperalgesia. Topics: Animals; Arthritis; Calcium Channel Blockers; Calcium Channels; Hot Temperature; Hyperalgesia; Male; Microdialysis; Nifedipine; omega-Agatoxin IVA; omega-Conotoxins; Pain; Peptides; Rats; Rats, Sprague-Dawley; Spider Venoms | 1998 |
Distinct effects of omega-toxins and various groups of Ca(2+)-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells.
The effects of omega-toxins and various Ca2+ antagonist subtypes on the 45Ca2+ entry into bovine adrenal medullary chromaffin cells stimulated via nicotinic acetylcholine receptors or via direct depolarization with K+, have been compared. The conditions selected to stimulate the 45Ca2+ entry consisted of a 60-s period of exposure of cells to 100 microM of the nicotinic acetylcholine receptor agonist dimethylphenylpiperazinium or to 70 mM K+. The N-type voltage-dependent Ca2+ channel blockers omega-conotoxin GVIA and MVIIA (1 microM) inhibited 45Ca2+ entry stimulated by dimethylphenylpiperazinium or K+ by around 25-30%. The P-type Ca2+ channel blocker omega-agatoxin IVA (10 nM) did not affect the dimethylphenylpiperazinium nor the K+ responses; 1 microM (Q-channel blockade) inhibited both responses by around 50%. The N/P/Q-type Ca2+ channel blocker omega-contoxin MVIIC (1 microM) inhibited the K+ evoked 45Ca2+ entry by 70%, while dimethylphenylpiperazinium was blocked by 50% (P < 0.001). The L-type Ca2+ channel blockers nifedipine, furnidipine, diltiazem or verapamil (3 microM each) inhibited much more the dimethylphenylpiperazinium than the K+ response. The dimethylphenylpiperazinium signal was blocked 71, 88, 89, and 53%, respectively, by nifedipine, furnidipine, diltiazem and verapamil, and the K+ response by 38, 29, 22, and 10%. Combined omega-conotoxin MVIIC (1 microM) and furnidipine (3 microM) blocked 100% of the K+ evoked 45Ca2+ entry. However, combined omega-conotoxin GVIA (1 microM), and furnidipine left unblocked 50% of the K+ response. The "wide spectrum' Ca2+ channel antagonists flunarizine or dotarizine (3 microM each) blocked the dimethylphenylpiperazinium and the K+ responses to a similar extent (50%); cinnarizine (3 microM) inhibited more the dimethylphenylpiperazinium (82%) than the K+ response (21%). At 3 microM, the highly lipophilic beta-adrenoceptor antagonist (+/-)-propranolol, reduced by 68% the dimethylphenylpiperazinium signal and by 23% the K+ signal. Other high lipophilic beta-adrenoceptor antagonists such as metoprolol and labetalol, reduced little the dimethylphenylpiperazinium and the K+ responses. The highly lipophilic agent penfluridol blocked the dimethylpiperazinium response by 30% and the K+ response by 50%. One of the least lipophilic compounds tested, (+)-lubeluzole, blocked by 40% the dimethylphenylpiperazinium and the K+ responses. These data are compatible with the idea that the various omega-toxin peptides used to Topics: Animals; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Radioisotopes; Cattle; Chromaffin Cells; Dimethylphenylpiperazinium Iodide; omega-Agatoxin IVA; omega-Conotoxin GVIA; omega-Conotoxins; Peptides; Potassium; Receptors, Nicotinic; Spider Venoms; Stimulation, Chemical | 1997 |
omega-Conotoxins block neurotransmission in the rat vas deferens by binding to different presynaptic sites on the N-type Ca2+ channel.
Electrically-induced twitch responses of the prostatic segment of vas deferens (0.1 Hz, 65 V, 1 ms) are mainly due to the transient presynaptic release of ATP, which acts postsynaptically on non-adrenergic receptors to contract smooth muscle cells. These responses were fully blocked by nanomolar concentrations of the omega-conotoxins GVIA, MVIIA, and MVIIC, most likely by inhibiting Ca2+ entry through presynaptic N-type Ca2+ channels controlling the release of ATP. Repeated washout of the toxins allowed the recovery of contractions, except for omega-conotoxin GVIA, whose inhibitory effects remained unchanged for at least 60 min. In addition, micromolar concentrations of omega-conotoxin MVIIC were unable to protect against the irreversible inhibition of twitch contractions induced by nanomolar concentrations of omega-conotoxin GVIA. At low extracellular Ca2+ concentrations (1.5 mM), 20 nM of omega-conotoxin GVIA or MVIIA inhibited completely the twitch contractions in about 10 min. In 5 mM Ca2+ the blockade of twitch contractions after 10 min was 70% for both toxins. In 1.5 mM Ca2+ omega-conotoxin MVIIC (1 microM) inhibited completely the twitch contraction after 10 min. In 5 mM Ca2+ blockade developed very slowly and was very poor after 30 min, omega-conotoxin MVIIC depressed the response by only 20%. These results are compatible with the idea that the three omega-conotoxins block the purinergic neurotransmission of the vas deferens by acting on presynaptic N-type voltage-dependent Ca2+ channels. However, omega-conotoxin MVIIC seems to bind to sites different from those recognised by omega-conotoxin GVIA and MVIIA, which are markedly differentiated by their Ca2+ requirements for binding to their receptors. Topics: Animals; Binding Sites; Calcium; Calcium Channel Blockers; Calcium Channels; Electric Stimulation; Male; Muscle Contraction; Neurotoxins; omega-Agatoxin IVA; omega-Conotoxin GVIA; omega-Conotoxins; Peptides; Rats; Rats, Wistar; Spider Venoms; Synaptic Transmission; Vas Deferens | 1997 |
Pharmacological characterisation of voltage-sensitive calcium channels and neurotransmitter release from mouse cerebellar granule cells in culture.
Using subtype-specific Ca-channel blockers, we have characterised the voltage-sensitive Ca2+ currents as well as neurotransmitter release from cultured mouse cerebellar granule cells. The whole cell version of the patch clamp technique was adapted to monitor the isolated Ca-channel currents. The currents were activated at potentials more positive than -40 mV and were composed of at least four pharmacological distinct components being sensitive to nifedipine (35%), omega-conotoxin GVIA (10%), and omega-agatoxin IVA (42%) corresponding to L-, N-, and P-channel-mediated currents. The insensitive fraction (13%) possibly represented R channels. High potassium-evoked release of 3H-D-aspartate was used as a model of synaptic release. These studies were performed at relatively mild stimulation conditions (30 mM K+, 0.4 mM Ca2+), and 85% of the evoked release was Ca2+ dependent as well as tetrodotoxin and Cd2+ sensitive. Nifedipine and omega-agatoxin IVA dose dependently (IC50 values of 10 nM and 0.7 nM, respectively) blocked most of the release, whereas omega-conotoxin MVIIA (IC50 = 5 nM) caused partial blockage. The results indicate that several subtypes of voltage-sensitive Ca channels are present in mouse cerebellar granule cells. Furthermore, the data suggest that L, N, and P channels act in concert in the neurotransmitter release process. Topics: Animals; Aspartic Acid; Calcium Channel Blockers; Calcium Channels; Cells, Cultured; Cerebellum; Dose-Response Relationship, Drug; Female; Glutamic Acid; Ion Channel Gating; Mice; Mice, Inbred Strains; Neurons; Nifedipine; omega-Agatoxin IVA; omega-Conotoxin GVIA; omega-Conotoxins; Patch-Clamp Techniques; Peptides; Pregnancy; Spider Venoms; Tritium | 1997 |
Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses.
Transmitter release at most central synapses depends on multiple types of calcium channels. Identification of the channels mediating GABA release in hippocampus is complicated by the heterogeneity of interneurons. Unitary IPSPs were recorded from pairs of inhibitory and pyramidal cells in hippocampal slice cultures. The N-type channel antagonist omega-conotoxin MVIIA abolished IPSPs generated by interneurons in st. radiatum, whereas the P/Q-type antagonist omega-agatoxin IVA had no effect. In contrast, omega-agatoxin IVA abolished IPSPs generated by st. lucidum and st. oriens interneurons, but omega-conotoxin MVIIA had no effect. After unitary IPSPs were blocked by toxin, transmission could not be restored by increasing presynaptic calcium entry. The axons of the two types of interneurons terminated within distinct strata of area CA3. Thus, GABA release onto pyramidal cells, unlike glutamate release, is mediated entirely by either N- or P-type calcium channels, depending on the presynaptic cell and the postsynaptic location of the synapse. Topics: Action Potentials; Animals; Calcium; Calcium Channel Blockers; Calcium Channels; Cells, Cultured; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Hippocampus; Interneurons; omega-Agatoxin IVA; omega-Conotoxin GVIA; omega-Conotoxins; Patch-Clamp Techniques; Peptides; Pyramidal Cells; Rats; Spider Venoms; Synapses; Synaptic Transmission | 1997 |
Role of Q-type Ca2+ channels in vasopressin secretion from neurohypophysial terminals of the rat.
1. The nerve endings of rat neurohypophyses were acutely dissociated and a combination of pharmacological, biophysical and biochemical techniques was used to determine which classes of Ca2+ channels on these central nervous system (CNS) terminals contribute functionally to arginine vasopressin (AVP) and oxytocin (OT) secretion. 2. Purified neurohypophysial plasma membranes not only had a single high-affinity binding site for the N-channel-specific omega-conopeptide MVIIA, but also a distinct high-affinity site for another omega-conopeptide (MVIIC), which affects both N- and P/Q-channels. 3. Neurohypophysial terminals exhibited, besides L- and N-type currents, another component of the Ca2+ current that was only blocked by low concentrations of MVIIC or by high concentrations of omega-AgaIVA, a P/Q-channel-selective spider toxin. 4. This Ca2+ current component had pharmacological and biophysical properties similar to those described for the fast-inactivating form of the P/Q-channel class, suggesting that in the neurohypophysial terminals this current is mediated by a 'Q'-type channel. 5. Pharmacological additivity studies showed that this Q-component contributed to rises in intraterminal Ca2+ concentration ([Ca2+]i) in only half of the terminals tested. 6. Furthermore, the non-L- and non-N-component of Ca(2+)-dependent AVP release, but not OT release, was effectively abolished by the same blockers of Q-type current. 7. Thus Q-channels are present on a subset of the neurohypophysial terminals where, in combination with N- and L-channels, they control AVP but not OT peptide neurosecretion. Topics: Animals; Arginine Vasopressin; Calcium; Calcium Channel Blockers; Calcium Channels; Cattle; Cell Membrane; Membrane Potentials; Mice; Nerve Endings; omega-Agatoxin IVA; omega-Conotoxins; Oxytocin; Peptides; Pituitary Gland, Posterior; Rats; Spider Venoms | 1997 |
Differential blockade of voltage-sensitive calcium channels at the mouse neuromuscular junction by novel omega-conopeptides and omega-agatoxin-IVA.
This investigation assessed the ability of a variety of calcium channel blocking peptides to block synaptic transmission in the isolated mouse phrenic nerve-hemidiaphragm. The synthetic version of the naturally occurring N-type voltage-sensitive calcium channel (VSCC) blocker omega-conopeptide MVIIA (SNX-111) had no effect on nerve-evoked muscle contractions. The non-N-, non-L-type VSCC blocker, omega-conopeptide MVIIC (SNX-230), blocked neuromuscular transmission completely, as did the selective P-type VSCC blocker, omega-Aga-IVA. Subsequent evaluation of other synthetic omega-conopeptides and analogs disclosed a significant positive correlation between the test compounds' affinities for high-affinity SNX-230 brain binding sites and their neuromuscular blocking potencies. Quantal analysis of transmitter release showed that SNX-230 abolished evoked endplate potentials completely, but had little effect on the amplitude and frequency of spontaneous miniature endplate potentials. Perineural focal recordings of presynaptic currents showed that SNX-230 did not block the neuronal action potential. These and other findings indicated that SNX-230 prevents transmitter release at the mouse neuromuscular junction by blocking calcium channels at presynaptic nerve endings. These calcium channels correspond pharmacologically to VSCCs associated with high-affinity binding sites in rat brain and are most probably either of the P- or Q-type. Topics: Amino Acid Sequence; Animals; Calcium Channel Blockers; Dose-Response Relationship, Drug; In Vitro Techniques; Male; Mice; Molecular Sequence Data; Muscle Contraction; Neuromuscular Junction; omega-Agatoxin IVA; omega-Conotoxins; Peptides; Spider Venoms | 1995 |