omega-agatoxin-iva has been researched along with alpha-methyl-4-carboxyphenylglycine* in 1 studies
1 other study(ies) available for omega-agatoxin-iva and alpha-methyl-4-carboxyphenylglycine
Article | Year |
---|---|
Metabotropic glutamate receptor modulation of voltage-gated Ca2+ channels involves multiple receptor subtypes in cortical neurons.
Metabotropic glutamate receptor (mGluR) modulation of voltage-gated Ca2+ channels was examined in isolated deep layer frontoparietal cortical neurons under conditions designed to isolate calcium-independent modulatory pathways. Trans-1-aminocyclopentane-1,3-dicarboxylate (t-ACPD), a nonspecific mGluR agonist, produced rapid and reversible inhibition of Ca2+ channels. This effect was mimicked by agonists for group I and group II, but not group III, mGluRs. Effects of group I and II agonists often were observed in the same neurons, but separate subgroups of neurons were unresponsive to the group I agonist quisqualate or the group II agonist 2-(2,3-dicarboxycyclopropyl) glycine (DCG-IV). Inhibition by quisqualate and DCG-IV was nonocclusive in neurons responding to both agonists. These agonists thus appear to act on different mGluRs. The mGluR antagonist alpha-methyl-4-carboxylphenylglycine attenuated inhibition by t-ACPD, quisqualate, and DCG-IV. Inhibition by quisqualate and DCG-IV was voltage-dependent. Although the effects of both agonists were greatly reduced by N-ethylmaleimide (NEM), inhibition by DCG-IV was more sensitive to NEM than inhibition by quisqualate. t-ACPD-induced inhibition was reduced by omega-conotoxin GVIA (omega-CgTx) and omega-agatoxin IVA (omega-AgTx) but was affected little by nifedipine. Inhibition by DCG-IV and quisqualate also was reduced by omega-CgTx. We conclude that multiple mGluR subtypes inhibit Ca2+ channels in cortical neurons and that N- and possibly P-type channels are inhibited. Modulation is via a rapid-onset, voltage-dependent mechanism that likely involves a pertussis toxin (PTX)-sensitive G-protein. Type I mGluRs may work via additional PTX-insensitive pathways. Topics: Animals; Benzoates; Calcium Channel Blockers; Calcium Channels; Cerebral Cortex; Cycloleucine; Cyclopropanes; Electrophysiology; Ethylmaleimide; Excitatory Amino Acid Agonists; Glycine; Ion Channel Gating; Neurons; Neurotoxins; Nifedipine; omega-Agatoxin IVA; omega-Conotoxin GVIA; Peptides; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Spider Venoms | 1996 |