omega-agatoxin-iva has been researched along with alpha-eudesmol* in 2 studies
2 other study(ies) available for omega-agatoxin-iva and alpha-eudesmol
Article | Year |
---|---|
omega-agatoxin IVA-sensitive Ca(2+) channel blocker, alpha-eudesmol, protects against brain injury after focal ischemia in rats.
omega-Agatoxin IVA-sensitive Ca(2+) channels have been thought to be involved in physiological excitatory amino acid glutamate release and these channels may also contribute to the development of ischemic brain injury. Recently, we demonstrated that alpha-eudesmol from Juniperus virginiana Linn. (Cupressaceae) inhibits potently the presynaptic omega-agatoxin IVA-sensitive Ca(2+) channels. In the present study, we investigated the effects of alpha-eudesmol on brain edema formation and infarct size determined after 24 h of reperfusion following 1 h of middle cerebral artery occlusion in rats. We first found that alpha-eudesmol concentration-dependently inhibited glutamate release from rat brain synaptosomes and that its inhibitory effect was Ca(2+)-dependent. In the middle cerebral artery occlusion study, intracerebroventricular (i.c.v.) treatment with alpha-eudesmol significantly attenuated the post-ischemic increase in brain water content. alpha-Eudesmol also significantly reduced the size of the infarct area determined by triphenyltetrazolium chloride staining after 24 h of reperfusion. Using a microdialysis technique, we further demonstrated that alpha-eudesmol inhibits the elevation of the extracellular concentration of glutamate during ischemia. From these results, we suggest that alpha-eudesmol displays an ability to inhibit exocytotic glutamate release and to attenuate post-ischemic brain injury. Topics: Animals; Brain Edema; Brain Ischemia; Calcium Channel Blockers; Cerebral Infarction; Dose-Response Relationship, Drug; Glutamic Acid; Male; Neuroprotective Agents; omega-Agatoxin IVA; Potassium; Rats; Rats, Sprague-Dawley; Rats, Wistar; Sesquiterpenes, Eudesmane; Terpenes | 2000 |
The nonpeptide alpha-eudexp6l from Juniperus virginiana Linn. (Cupressaceae) inhibits omega-agatoxin IVA-sensitive Ca2+ currents and synaptosomal 45Ca2+ uptake.
Recently, the omega-agatoxin IVA (omega-Aga-IVA)-sensitive Ca2+ channel has been demonstrated to play an important role in the physiological neurotransmitter release in mammalian nerve terminals. In this study, we demonstrate that alpha-eudesmol from Juniperus virginiana Linn. (Cupressaceae) inhibits omega-Aga-IVA-sensitive Ca2+ channels in rat brain synaptosomes and cerebellar Purkinje cells. Thirty millimolar KCl-induced 45Ca2+ uptake into the synaptosomes was inhibited by omega-Aga-IVA but insensitive to omega-conotoxin GVIA (omega-CTX-GVIA, N-type Ca2+ channel blocker) and nicardipine (L-type Ca2+ channel blocker). We found that alpha-eudesmol concentration-dependently inhibited the above synaptosomal 45Ca2+ uptake with an IC50 value of 2.6 microM. Co-treatment with alpha-eudesmol and omega-Aga-IVA did not cause any additive inhibitory effect against the synaptosomal 45Ca2+ uptake. Using the whole-cell patch clamp electrophysiological technique, we further demonstrated that alpha-eudesmol concentration-dependently inhibited omega-Aga-IVA-sensitive Ca2+ channel currents recorded from Purkinje cells with an IC50 value of 3.6 microM. The current-voltage relationship of the omega-Aga-IVA-sensitive Ca2+ channel currents was not changed by alpha-eudesmol. On the other hand, alpha-eudesmol also displayed an inhibitory effect on N-type Ca2+ channel currents recorded from differentiated NG108-15 cells with an IC50 value of 6.6 microM. However, alpha-eudesmol had little inhibitory effect on L-type Ca2+ channel currents. Thus, the present data indicated that alpha-eudesmol is a potent nonpeptidergic compound which blocks the presynaptic omega-Aga-IVA-sensitive Ca2+ channel with relative selectivity. Topics: Animals; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Calcium Radioisotopes; Electric Conductivity; Juniperus; omega-Agatoxin IVA; Plant Extracts; Purkinje Cells; Rats; Rats, Sprague-Dawley; Sesquiterpenes, Eudesmane; Spider Venoms; Synaptosomes; Terpenes; Tumor Cells, Cultured | 1999 |