omdm-2-cpd and glyceryl-2-arachidonate

omdm-2-cpd has been researched along with glyceryl-2-arachidonate* in 3 studies

Other Studies

3 other study(ies) available for omdm-2-cpd and glyceryl-2-arachidonate

ArticleYear
Evidence for bidirectional endocannabinoid transport across cell membranes.
    The Journal of biological chemistry, 2012, Oct-05, Volume: 287, Issue:41

    Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism.

    Topics: Arachidonic Acids; Benzyl Compounds; Biological Transport, Active; Cell Membrane; Endocannabinoids; Furans; Glycerides; Humans; Membrane Lipids; Polyunsaturated Alkamides; U937 Cells

2012
Gender-dependent cellular and biochemical effects of maternal deprivation on the hippocampus of neonatal rats: a possible role for the endocannabinoid system.
    Developmental neurobiology, 2008, Sep-15, Volume: 68, Issue:11

    Adult animals submitted to a single prolonged episode of maternal deprivation (MD) [24 h, postnatal days (PND) 9-10] show behavioral alterations that resemble specific symptoms of schizophrenia. These behavioral impairments may be related to neuronal loss in the hippocampus triggered by elevated glucocorticoids. Furthermore, our previous data suggested functional relationships between MD stress and the endocannabinoid system. In this study, we addressed the effects of MD on hippocampal glial cells and the possible relationship with changes in plasma corticosterone (CORT) levels. In addition, we investigated the putative involvement of the endocannabinoid system by evaluating (a) the effects of MD on hippocampal levels of endocannabinoids (b) The modulation of MD effects by two inhibitors of endocannabinoids inactivation, the fatty acid amide hydrolase inhibitor N-arachidonoyl-serotonin (AA-5-HT), and the endocannabinoid reuptake inhibitor, OMDM-2. Drug treatments were administered once daily from PND 7 to PND 12 at a dose of 5 mg/kg, and the animals were sacrificed at PND 13. MD induced increased CORT levels in both genders. MD males also showed an increased number of astrocytes in CA1 and CA3 areas and a significant increase in hippocampal 2-arachidonoylglycerol. The cannabinoid compounds reversed the endocrine and cellular effects of maternal deprivation. We provide direct evidence for gender-dependent cellular and biochemical effects of MD on developmental hippocampus, including changes in the endocannabinoid system.

    Topics: Animals; Animals, Newborn; Arachidonic Acids; Astrocytes; Benzyl Compounds; Cannabinoid Receptor Modulators; Corticosterone; Drug Administration Schedule; Endocannabinoids; Female; Glial Fibrillary Acidic Protein; Gliosis; Glycerides; Hippocampus; Male; Maternal Deprivation; Rats; Rats, Wistar; Serotonin; Sex Characteristics; Stress, Psychological; Up-Regulation

2008
Activity-dependent release and actions of endocannabinoids in the rat hypothalamic supraoptic nucleus.
    The Journal of physiology, 2005, Dec-15, Volume: 569, Issue:Pt 3

    Exogenous cannabinoids have been shown to significantly alter neuroendocrine output, presaging the emergence of endogenous cannabinoids as important signalling molecules in the neuroendocrine control of homeostatic and reproductive functions, including the stress response, energy metabolism and gonadal regulation. We showed recently that magnocellular and parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus and supraoptic nucleus (SON) respond to glucocorticoids by releasing endocannabinoids as retrograde messengers to modulate the synaptic release of glutamate. Here we show directly for the first time that both of the main endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are released in an activity-dependent fashion from the soma/dendrites of SON magnocellular neurones and suppress synaptic glutamate release and postsynaptic spiking. Cannabinoid reuptake blockade increases activity-dependent endocannabinoid levels in the region of the SON, and results in the inhibition of synaptically driven spiking activity in magnocellular neurones. Together, these findings demonstrate an activity-dependent release of AEA and 2-AG that leads to the suppression of glutamate release and that is capable of shaping spiking activity in magnocellular neurones. This activity-dependent regulation of excitatory synaptic input by endocannabinoids may play a role in determining spiking patterns characteristic of magnocellular neurones under stimulated conditions.

    Topics: Animals; Arachidonic Acids; Benzoxazines; Benzyl Compounds; Cannabinoid Receptor Modulators; Cannabinoids; Endocannabinoids; Excitatory Postsynaptic Potentials; Glutamic Acid; Glycerides; In Vitro Techniques; Male; Morpholines; Naphthalenes; Neurons; Piperidines; Polyunsaturated Alkamides; Presynaptic Terminals; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Presynaptic; Supraoptic Nucleus; Synaptic Transmission

2005