omdm-1-cpd and glyceryl-2-arachidonate

omdm-1-cpd has been researched along with glyceryl-2-arachidonate* in 3 studies

Other Studies

3 other study(ies) available for omdm-1-cpd and glyceryl-2-arachidonate

ArticleYear
Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus.
    British journal of pharmacology, 2007, Volume: 151, Issue:7

    Evidence indicates that the endocannabinoid, 2-arachidonoylglycerol (2-AG), increases food intake when injected into the nucleus accumbens shell (NAcS), thereby potentially activating hypothalamic nuclei involved in food intake regulation. We aimed to evaluate potential orexigenic effects of the endocannabinoid anandamide and of AA5HT, a fatty acid amide hydrolase (FAAH) inhibitor, and OMDM-1, an inhibitor of anandamide uptake, injected in the NAcS, as well as the effect of these treatments on activation of hypothalamic nuclei.. Drugs were given into the NAcS of rats and food intake quantified during the next 4 h. In other groups, after the same treatments the brains were processed for c-Fos immunohistochemistry with focus on hypothalamic nuclei. Additional groups were used to quantify endocannabinoid levels in the nucleus accumbens and the hypothalamus after AA5HT and OMDM-1 intra-NAcS injections.. Our results indicate that the above treatments stimulate food intake during 4 h post-injection. They also increase c-Fos immunoreactivity in hypothalamic nuclei. The CB(1) antagonist, AM251, blocked these effects. Finally, we found elevated levels of 2-AG, but not anandamide, after intra-NAcS injections of AA5HT.. These data support the involvement of the endocannabinoid system in feeding behavior at the level of the NAcS and hypothalamus. In addition, this is the first experimental demonstration that the pharmacological inhibition of endocannabinoid inactivation in the NAcS stimulates food intake, suggesting that the endocannabinoid degrading proteins can be a target for treating eating disorders.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Arcuate Nucleus of Hypothalamus; Benzyl Compounds; Cannabinoid Receptor Modulators; Eating; Endocannabinoids; Glycerides; Hypothalamus; Immunohistochemistry; Male; Nucleus Accumbens; Piperidines; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-fos; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Serotonin; Time Factors

2007
Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility.
    Molecular human reproduction, 2005, Volume: 11, Issue:1

    The levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) are under the negative control of leptin in the rodent hypothalamus. As leptin and endocannabinoids play opposite roles in the control of reproduction, we have investigated whether the impaired fertility typical of leptin-defective ob/ob mice is due, in part, to enhanced uterine endocannabinoid levels. We found that levels of both anandamide and 2-AG in the uterus of ob/ob mice are significantly elevated with respect to wild-type littermates, due to reduced hydrolase activity in the case of anandamide, and to reduced monoacylglycerol lipase and enhanced diacylglycerol lipase activity in the case of 2-AG. Furthermore, the process mediating endocannabinoid cellular uptake was also impaired in ob/ob mice, whereas the levels of cannabinoid and anandamide receptors were not modified. Although ineffective in wild-type mice, treatment of ob/ob mice with leptin re-established endocannabinoid levels and enzyme activities back to the values observed in wild-type littermates. Finally, treatment of ob/ob females with the CB1 receptor antagonist SR141716A did not improve their fertility, and inhibition of endocannabinoid inactivation with the endocannabinoid uptake inhibitor OMDM-1 in wild-type females did not result in impaired fertility.

    Topics: Animals; Arachidonic Acids; Benzyl Compounds; Cannabinoid Receptor Modulators; Endocannabinoids; Female; Fertility; Glycerides; Leptin; Lipoprotein Lipase; Mice; Mice, Knockout; Monoacylglycerol Lipases; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptors, Leptin; Rimonabant; Up-Regulation; Uterus

2005
Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew.
    Neuropharmacology, 2005, Volume: 49, Issue:4

    The chemotherapeutic agent cisplatin may produce emesis via release of several neurotransmitters such as serotonin (5-HT), substance P and/or dopamine as well as production of prostaglandins (PGs). Administration of synthetic 2-arachidonoylglycerol (2-AG) but not of anandamide, which are two putative endocannabinoids, causes vomiting via its downstream metabolites such as arachidonic acid (AA) and PGs in the least shrew (Cryptotis parva). We report here that cisplatin (0, 5, 10 and 20 mg/kg, i.p.) causes dose- and time-dependent increases in brain tissue levels of 2-AG but not anandamide in this vomiting species. Concomitantly, intestinal tissue levels of both endocannabinoids are relatively reduced. Selective inhibitors [arachidonoyl-serotonin (AA-5-HT) and URB597, 0-5 and 0-10 mg/kg, i.p.] of one of the major endocannabinoid metabolic enzymes, the intracellular fatty acid amide hydrolase (FAAH), do not significantly prevent vomiting produced by emetic doses of i.p.-administered 2-AG, cisplatin or the dopamine receptor agonist apomorphine. At large doses (10 and 20 mg/kg, respectively), both FAAH inhibitors caused emesis per se. Administration of one selective uptake inhibitor of endocannabinoids, OMDM1 (0-5 mg/kg, i.p.), also did not significantly prevent emesis by the direct and indirect emetic stimuli, and likewise caused emesis by itself at a high (10 mg/kg) dose. However, another selective uptake inhibitor, VDM11, did not produce significant emesis per se and prevented emesis caused by apomorphine. Both the corticosteroid dexamethasone, and the cyclooxygenase inhibitor indomethacin, reduced vomiting produced by cisplatin. These data: (a) provide the first evidence that cisplatin causes a selective increase in 2-AG levels in the brain, and (b) support the established notion that 2-AG may produce some of its effects, including emesis, via downstream metabolites produced independently of FAAH.

    Topics: Analysis of Variance; Animals; Apomorphine; Arachidonic Acids; Benzamides; Benzyl Compounds; Brain; Carbamates; Cisplatin; Dopamine Agonists; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Female; Glycerides; Intestinal Mucosa; Intestines; Male; Radiation-Sensitizing Agents; Serotonin; Shrews; Time Factors; Vomiting

2005