oligomycins and arachidonyltrifluoromethane

oligomycins has been researched along with arachidonyltrifluoromethane* in 1 studies

Other Studies

1 other study(ies) available for oligomycins and arachidonyltrifluoromethane

ArticleYear
Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis.
    Free radical biology & medicine, 2003, Dec-01, Volume: 35, Issue:11

    In this study, we investigated the involvement of reactive oxygen species (ROS) and calcium in staurosporine (STS)-induced apoptosis in cultured retinal neurons, under conditions of maintained membrane integrity. The antioxidants idebenone (IDB), glutathione-ethylester (GSH/EE), trolox, and Mn(III)tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) significantly reduced STS-induced caspase-3-like activity and intracellular ROS generation. Endogenous sources of ROS production were investigated by testing the effect of the following inhibitors: 7-nitroindazole (7-NI), a specific inhibitor of the neuronal isoform of nitric oxide synthase (nNOS); arachidonyl trifluoromethyl ketone (AACOCF(3)), a phospholipase A(2) (PLA(2)) inhibitor; allopurinol, a xanthine oxidase inhibitor; and the mitochondrial inhibitors rotenone and oligomycin. All these compounds decreased caspase-3-like activity and ROS generation, showing that both mitochondrial and cytosolic sources of ROS are implicated in this mechanism. STS induced a significant increase in intracellular calcium concentration ([Ca(2+)](i)), which was partially prevented in the presence of IDB and GSH/EE, indicating its dependence on ROS generation. These two antioxidants and the inhibitors allopurinol and 7-NI also reduced the number of TdT-mediated dUTP nick-end labeling-positive cells. Thus, endogenous ROS generation and the rise in intracellular calcium are important inter-players in STS-triggered apoptosis. Furthermore, the antioxidants may help to prolong retinal cell survival upon apoptotic cell death.

    Topics: Adenine; Allopurinol; Animals; Antioxidants; Apoptosis; Arachidonic Acids; Benzoquinones; Blotting, Western; Calcium; Carbon; Caspase 3; Caspases; Cell Death; Cell Survival; Chick Embryo; Chromans; Coloring Agents; Cytosol; DNA Fragmentation; Enzyme Inhibitors; Glutathione; In Situ Nick-End Labeling; Indazoles; Metalloporphyrins; Mitochondria; Neurons; Nitric Oxide Synthase; Oligomycins; Protein Isoforms; Reactive Oxygen Species; Retina; Rotenone; Staurosporine; Tetrazolium Salts; Thiazoles; Time Factors; Ubiquinone; Uncoupling Agents; Xanthine Oxidase

2003