oligomycins has been researched along with 4-nitrobenzylthioinosine* in 2 studies
2 other study(ies) available for oligomycins and 4-nitrobenzylthioinosine
Article | Year |
---|---|
Astrocytes and neurons: different roles in regulating adenosine levels.
Adenosine is an endogenous nucleoside that signals through G-protein coupled receptors. Extracellular adenosine is required for receptor activation and two pathways have been identified for formation and cellular release of adenosine. The CLASSICAL pathway relies on intracellular formation of adenosine from adenine nucleotides and cellular efflux of adenosine via equilibrative nucleoside transporters (ENTs). The ALTERNATE pathway involves cellular release of adenine nucleotides, hydrolysis via ecto-5'-nucleotidases and extracellular formation of adenosine.. A rat model of cerebral ischemia and primary cultures of rat forebrain astrocytes and neurons were used.. Using a rat model of cerebral ischemia, the ENT1 inhibitor nitrobenzylmercaptopurine ribonucleoside (NBMPR) significantly increased post-ischemic forebrain adenosine levels and significantly decreased hippocampal neuron injury relative to saline-treatment. NBMPR-induced increases in adenosine receptor activation were not detected, suggesting that altering the intracellular:extracellular distribution of adenosine can affect ischemic outcome. Using primary cultures of rat forebrain astrocytes and neurons, adenosine release was evoked by ischemic-like conditions. Dipyridamole, an inhibitor of ENTs, was more effective at inhibiting adenosine release from neurons than from astrocytes. In contrast, alpha , beta-methylene ADP, an inhibitor of ecto-5'-nucleotidase, was effective at inhibiting adenosine release from astrocytes, but not from neurons. Thus, during ischemic-like conditions, neurons released adenosine via the CLASSICAL pathway, while astrocytes released adenosine via the ALTERNATE pathway.. These cell type differences in pathways for adenosine formation during ischemia may allow transport inhibitors to block simultaneously adenosine release from neurons and adenosine uptake into astrocytes. In principle, this could improve neuronal ATP levels without decreasing adenosine receptor activation. Topics: Adenosine; Affinity Labels; Animals; Astrocytes; Brain Ischemia; Cells, Cultured; Deoxyglucose; Dipyridamole; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Glucose; Hypoxia; Inosine; Models, Biological; Neurons; Oligomycins; Phosphodiesterase Inhibitors; Prosencephalon; Purines; Rats; Thioinosine; Tritium | 2005 |
Adenosine triphosphate degradation products after oxidative stress and metabolic dysfunction in cultured retinal cells.
The alteration in energy metabolic products was analyzed in cultured retinal cells submitted to oxidative stress, hypoxia, glucopenia, or ischemia-like conditions. Ischemia highly reduced cellular ATP and increased AMP formation, without significant changes in ADP. Ischemia induced a significant increase in extracellular adenosine (ADO) and hypoxanthine (HYP), and to a lesser extent inosine (INO). Glucopenia reduced cellular ATP by about two- to threefold, which was not compensated for by AMP formation. Under glucopenia, extracellular ADO and HYP were significantly increased, although a major increase in extracellular INO was observed. 5-(4-Nitrobenzyl)-6-thioinosine (10 microM) reduced extracellular ADO during glucopenia or ischemia by approximately 80%, indicating that ADO accumulation occurs mainly via the transporter. Intracellular ATP, ADP, or AMP and extracellular ADO, INO, or HYP were not apparently changed after oxidative stress or hypoxia. Nevertheless, in the presence of 10 microM erythro-9-(2-hydroxy-3-nonyl)adenosine, oxidative stress was shown to increase significantly the accumulation of ADO, which was reduced in the presence of 200 microM alpha,beta-methyleneadenosine 5'-diphosphate, suggesting that ADO accumulation after oxidative stress may result from extracellular degradation of adenine nucleotides. The increase in ADO accumulation resulting from the depletion of cellular ATP was directly related to the release of endogenous glutamate occurring through a Ca2+-independent pathway after ischemia. Increased metabolic products derived from ATP are suggested to exert a modulating effect against excitotoxic neuronal death. Topics: Adenine; Adenosine; Adenosine Diphosphate; Adenosine Monophosphate; Adenosine Triphosphate; Animals; Calcium; Cell Hypoxia; Cells, Cultured; Chick Embryo; Enzyme Inhibitors; Glucose; Hypoxanthine; Inosine; Iodoacetates; Iodoacetic Acid; Ischemia; Kinetics; Oligomycins; Oxidative Stress; Retina; Thioinosine | 1997 |