oligomycins and 3-methyladenine

oligomycins has been researched along with 3-methyladenine* in 3 studies

Other Studies

3 other study(ies) available for oligomycins and 3-methyladenine

ArticleYear
Effects of prolonged cold-ischemia on autophagy in the graft lung in a rat orthotopic lung transplantation model.
    Life sciences, 2021, Mar-01, Volume: 268

    Ischemia-reperfusion (I/R) injury causes present challenges in the field of graft transplantation which is also a major contributor to early graft dysfunction or failure after organ transplantation. The study focuses on the effects of prolonged cold-ischemia (CI) on the autophagic activity in the graft lung in a rat orthotopic lung transplantation model.. Donor lungs were preserved under CI conditions for different periods. An orthotopic lung transplantation model was developed, and the lung tissues from donor lungs subjected to CI preservation and reperfusion were harvested. We evaluated the effects of different CI periods on autophagy, reactive oxygen species (ROS) and glucose consumption. Additionally, the mechanism by which prolonged CI affected autophagy was investigated through determination of the molecules related to the mTOR pathway after treatment with 3-Methyladenine (3-MA), rapamycin and an adenosine triphosphate (ATP) synthase inhibitor oligomycin (OM).. Prolonged CI led to increased activities of key glycolytic enzymes, glucose consumption and lactic acid production. Autophagy, ROS and glucose consumption were induced in the graft lung after I/R, which reached peak levels after 6 h and was gradually decreased. Most importantly, the perfusion treatment of 3-MA or OM decreased ROS level and autophagy, but increased the extent of mTOR phosphorylation, while the perfusion treatment of rapamycin induced ROS and autophagy.. Taken together, autophagy mediated by a prolonged CI preservation affects the glucose consumption and ROS production in the graft lung via the mTOR signaling pathway.

    Topics: Adenine; Animals; Autophagy; Cold Ischemia; Glycolysis; Lung; Lung Transplantation; Lysosomal Membrane Proteins; Male; Mitochondria; Oligomycins; Organ Preservation; Oxidative Phosphorylation; Perfusion; Rats, Sprague-Dawley; Reactive Oxygen Species; Reperfusion Injury; TOR Serine-Threonine Kinases

2021
Bioenergetic adaptation in response to autophagy regulators during rotenone exposure.
    Journal of neurochemistry, 2014, Volume: 131, Issue:5

    Parkinson's disease is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing Parkinson's disease. We previously reported that in differentiated SH-SY5Y cells, rotenone-induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10-100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 h, caused cell death at 24 h with an LD50 of 10 nM. Overall, autophagic flux was decreased by 10 nM rotenone at both 2 and 24 h, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 h, suggesting that a mitochondrial-specific lysosomal degradation pathway may be activated. Up-regulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3-methyladenine exacerbated cell death. Interestingly, while 3-methyladenine exacerbated the rotenone-dependent effects on bioenergetics, rapamycin did not prevent rotenone-induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor.

    Topics: Adenine; Animals; Autophagy; Cell Survival; Cells, Cultured; Cerebral Cortex; DNA Damage; DNA, Mitochondrial; Dose-Response Relationship, Drug; Embryo, Mammalian; Energy Metabolism; Enzyme Inhibitors; Insecticides; Lactosylceramides; Neurons; Oligomycins; Oxygen Consumption; Rats; Rotenone; Sirolimus

2014
Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress.
    Molecular pharmacology, 1990, Volume: 37, Issue:3

    Pretreatment of cultured hepatocytes with the ferric iron chelator deferoxamine prevents the killing of the cells by tert-butyl hydroperoxide (TBHP). Incubation of the deferoxamine-pretreated hepatocytes in a serum-free medium containing only 0.25 nM iron restored the sensitivity of the cells to TBHP within 4 to 6 hr. An amino acid-free medium accelerated the restoration of sensitivity in parallel with an enhanced rate of degradation of 14C-prelabeled protein. By contrast, inhibitors of the autophagic degradation of protein, including chymostatin, 3-methyladenine, benzyl alcohol, colchicine, oligomycin, and methylamine, inhibited the restoration of sensitivity of deferoxamine-treated hepatocytes to TBHP in parallel with their inhibition of protein degradation. With chymostatin, 3-methyladenine, benzyl alcohol, and colchicine, there was a parallel dose dependency of both the inhibition of protein turnover and the inhibition of the restoration of sensitivity to TBHP. Ascorbic acid, known to specifically retard the autophagic degradation of ferritin, inhibited the restoration of sensitivity to TBHP without effect on the general rate of protein turnover. None of the agents studied had any protective effect on the toxicity of TBHP for hepatocytes that were not pretreated with deferoxamine. These data indicate that the autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by TBHP.

    Topics: Adenine; Amino Acids; Animals; Ascorbic Acid; Autophagy; Benzyl Alcohol; Benzyl Alcohols; Cell Survival; Cells, Cultured; Colchicine; Deferoxamine; Ferric Compounds; Ferritins; Liver; Methylamines; Oligomycins; Oligopeptides; Oxidation-Reduction; Peroxides; Phagocytosis; Proteins; Rats; Rats, Inbred Strains; tert-Butylhydroperoxide

1990