oleylamide has been researched along with erucyl-amide* in 3 studies
3 other study(ies) available for oleylamide and erucyl-amide
Article | Year |
---|---|
Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification.
Fatty acid amides from plant root exudates, such as oleamide and erucamide, have the ability to participate in strong plant-microbe interactions, stimulating nitrogen metabolism in rhizospheric bacteria. However, mechanisms of secretion of such fatty acid amides, and the nature of their stimulatory activities on microbial metabolism, have not been examined. In the present study, collection, pre-treatment, and determination methods of oleamide and erucamide in duckweed root exudates are compared. The detection limits of oleamide and erucamide by gas chromatography (GC) (10.3ngmL(-1) and 16.1ngmL(-1), respectively) are shown to be much lower than those by liquid chromatography (LC) (1.7 and 5.0μgmL(-1), respectively). Quantitative GC analysis yielded five times larger amounts of oleamide and erucamide in root exudates of Spirodela polyrrhiza when using a continuous collection method (50.20±4.32 and 76.79±13.92μgkg(-1) FW day(-1)), compared to static collection (10.88±0.66 and 15.27±0.58μgkg(-1) FW day(-1)). Furthermore, fatty acid amide secretion was significantly enhanced under elevated nitrogen conditions (>300mgL(-1)), and was negatively correlated with the relative growth rate of duckweed. Mechanistic assays were conducted to show that erucamide stimulates nitrogen removal by enhancing denitrification, targeting two key denitrifying enzymes, nitrate and nitrite reductases, in bacteria. Our findings significantly contribute to our understanding of the regulation of nitrogen dynamics by plant root exudates in natural ecosystems. Topics: Amides; Araceae; Bacteria; Biodegradation, Environmental; Chromatography, Gas; Chromatography, Liquid; Denitrification; Erucic Acids; Fatty Acids; Nitrate Reductase; Nitrite Reductases; Nitrogen; Oleic Acids; Plant Exudates; Plant Roots | 2016 |
Comparison of three gas chromatography methods for the determination of slip agents in polyethylene films.
Polymers require the use of some slip agents, such as oleamide and erucamide, in order to reduce their friction coefficient and to make films easier to handle. In this communication, three analytical methods consisting in pressurized liquid extraction (PLE) and gas chromatography (GC) are used to determine oleamide and erucamide in polyethylene films. The sample was extracted with pure isopropanol (two times) at 105 degrees C for 16 min. Then, the liquid extract containing oleamide and erucamide was analyzed by GC and three different detection systems: flame ionization detector (FID), thermoionic selective detector (TSD) and ion-trap mass spectrometry detector (MSD). Oleamide and erucamide were separated using a 30 m x 0.25 mm (I.D.) 5% phenyl-95% dimethyl-polysiloxane capillary column in 12 min. The chromatographic methods were characterized and compared in terms of repeatability, linearity and sensitivity. The GC-FID and GC-TSD methods were linear up to about 60 microg ml(-1), whereas the linear range for the GC-MSD method was shorter, from 20.5 to 42 microg ml(-1). LODs identified with GC-MSD were two times higher than those identified with the other two methods. Repeatability values (expressed as relative standard deviation) of less than 2.5% were found for FID and TSD but they were above 10% for MSD. Finally, each method was applied to determine the content of erucamide and oleamide in several polyethylene films and the results obtained were compared with those obtained from the nitrogen content measured by pyrolysis and gas-phase chemiluminescence. No significant differences were observed between the results of the methods. Topics: Chromatography, Gas; Erucic Acids; Flame Ionization; Gas Chromatography-Mass Spectrometry; Molecular Structure; Oleic Acids; Polyethylene; Reproducibility of Results | 2007 |
Determination of oleamide and erucamide in polyethylene films by pressurised fluid extraction and gas chromatography.
A pressurized fluid extraction (PFE) and gas chromatography-flame ionization detection (GC-FID) method is proposed to determine the slip agents in polyethylene (PE) films. The study of PFE variables was performed using a fractional factorial design (FFD) for screening and a central composite design (CCD) for optimizing the main variables obtained from the Pareto charts. The variables that were studied include temperature, static time, percentage of cyclohexane and the number of extraction cycles. The final condition selected was pure isopropanol (two times) at 105 degrees C for 16min. The recovery of spiked oleamide and erucamide was around 100%. The repeatability of the method was between 9.6% for oleamide and 8% for erucamide, expressed as relative standard deviation. Finally, the method was applied to determine oleamide and erucamide in several polyethylene films and the results were statistically equal to those obtained by pyrolysis and gas-phase chemiluminescence (CL). Topics: Analysis of Variance; Chromatography, Gas; Erucic Acids; Oleic Acids; Pressure | 2006 |