oleuropein and deguelin

oleuropein has been researched along with deguelin* in 1 studies

Other Studies

1 other study(ies) available for oleuropein and deguelin

ArticleYear
Olive polyphenols attenuate TNF-α-stimulated M-CSF and IL-6 synthesis in osteoblasts: Suppression of Akt and p44/p42 MAP kinase signaling pathways.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 141

    Olive oil polyphenols, which possess cytoprotective activities like anti-oxidant and anti-inflammatory effects, could modulate osteoblast functions. The aim of this study is to elucidate the effects and the underlying mechanisms of hydroxytyrosol and oleuropein on the tumor necrosis factor-α (TNF-α)-induced macrophage colony-stimulating factor (M-CSF) and interleukin-6 (IL-6) synthesis in osteoblasts.. Osteoblast-like MC3T3-E1 cells were pretreated with hydroxytyrosol, oleuropein, deguelin, PD98059 or wedelolactone, and then stimulated by TNF-α. The levels of M-CSF and IL-6 in the conditioned medium were determined with ELISA. The mRNA expression levels of M-CSF or IL-6 were determined with real-time RT-PCR. The phosphorylation levels of Akt, p44/p42 mitogen-activated protein (MAP) kinase or NF-κB in the cell lysates were determined with Western blot analysis.. Hydroxytyrosol and oleuropein attenuated the TNF-α-stimulated M-CSF release. Deguelin, an inhibitor of Akt, significantly suppressed the TNF-α-stimulated M-CSF release, which failed to be affected by the MEK1/2 inhibitor PD98059 or the IκB inhibitor wedelolactone. Hydroxytyrosol and oleuropein suppressed the TNF-α-induced phosphorylation of Akt and p44/p42 MAP kinase. Hydroxytyrosol and oleuropein attenuated the TNF-α-stimulated IL-6 release. Hydroxytyrosol suppressed the TNF-α-induced mRNA expressions of M-CSF and IL-6. Hydroxytyrosol or oleuropein failed to affect the cell viability.. Our present findings strongly suggest that olive oil polyphenols hydroxytyrosol and oleuropein down-regulates TNF-α signaling at the points upstream of Akt and p44/p42 MAP kinase in osteoblasts, leading to the attenuation of M-CSF and IL-6 synthesis.

    Topics: 3T3 Cells; Animals; Culture Media, Conditioned; Interleukin-6; Iridoid Glucosides; Macrophage Colony-Stimulating Factor; MAP Kinase Signaling System; Mice; Mitogen-Activated Protein Kinase 1; Olea; Oncogene Protein v-akt; Phenylethyl Alcohol; Polyphenols; Rotenone; Signal Transduction; Tumor Necrosis Factor-alpha

2021