oleuropein and apigetrin

oleuropein has been researched along with apigetrin* in 3 studies

Other Studies

3 other study(ies) available for oleuropein and apigetrin

ArticleYear
Root verbascoside and oleuropein are potential indicators of drought resistance in olive trees (Olea europaea L.).
    Plant physiology and biochemistry : PPB, 2019, Volume: 141

    Polyphenols are constituents of all higher plants. However, their biosynthesis is often induced when plants are exposed to abiotic stresses, such as drought. The aim of the present work was to determine the phenolic status in the roots of olive trees grown under water deficit conditions. The results revealed that roots of water-stressed plants had a higher content of total phenols. The main compound detected in well-watered olive tree roots was verbascoside. Oleuropein was established as the predominant phenolic compound of water-stressed plants. The oleuropein/verbascoside ratio varied between 0.31 and 6.02 in well-watered and water-stressed plants respectively, which could be a useful indicator of drought tolerance in olive trees. Furthermore, this study is the first to provide experimental evidence showing that luteolin-7-rutinoside, luteolin-7-glucoside and apigenin-7-glucoside were the dominant flavonoid glucosides in olive tree roots and showed the most significant variations under water stress.

    Topics: Antioxidants; Apigenin; Droughts; Flavonoids; Glucosides; Iridoid Glucosides; Iridoids; Olea; Phenol; Phenols; Phenylethyl Alcohol; Plant Extracts; Plant Leaves; Plant Roots; Polyphenols; Spectrophotometry, Ultraviolet; Stress, Physiological; Water

2019
Solid-liquid transfer of biophenols from olive leaves for the enrichment of edible oils by a dynamic ultrasound-assisted approach.
    Journal of agricultural and food chemistry, 2008, Aug-27, Volume: 56, Issue:16

    A continuous approach assisted by ultrasound for direct enrichment of edible oils (olive, sunflower, and soya) with the main phenols in olive leaves (i.e., oleuropein, verbascoside, apigenin-7-glucoside, and luteolin-7-glucoside) has been developed. Multivariate methodology was used to carry out a detailed optimization of the enrichment, and quantitation of the transferred compounds was based on LC-MS-MS in multiple reaction monitoring optimizing the most sensitive transition for each biophenol. Under the optimal working conditions, only 20 min is necessary to enrich the edible oils with 14.45-9.92 microg/mL oleuropein, 2.29-2.12 microg/mL verbascoside, 1.91-1.51 microg/mL apigenin-7-glucoside, and 1.60-1.42 microg/mL luteolin-7-glucoside. The enrichment method is carried out at room temperature and is organic-solvent-free; thus, the healthy properties of the edible oils improve as does their quality. Also, the low acquisition and maintenance costs of an ultrasound source and its application in a dynamic system make advisable the industrial implementation of the proposed method.

    Topics: Apigenin; Dietary Fats, Unsaturated; Food, Fortified; Glucosides; Iridoid Glucosides; Iridoids; Luteolin; Olea; Phenols; Plant Leaves; Pyrans; Ultrasonics

2008
Superheated liquid extraction of oleuropein and related biophenols from olive leaves.
    Journal of chromatography. A, 2006, Dec-15, Volume: 1136, Issue:2

    Oleuropein and other healthy olive biophenols (OBPs) such as verbacoside, apigenin-7-glucoside and luteolin-7-glucoside have been extracted from olive leaves by using superheated liquids and a static-dynamic approach. Multivariate methodology has been used to carry out a detailed optimisation of the extraction. Under the optimal working conditions, complete removal without degradation of the target analytes was achieved in 13 min. The extract was injected into a chromatograph-photodiode array detector assembly for individual separation-quantification. The proposed approach - which provides more concentrated extracts than previous alternatives - is very useful to study matrix-extractant analytes partition. In addition, the efficacy of superheated liquids to extract OBPs, the simplicity of the experimental setup, its easy automation and low acquisition and maintenance costs make the industrial implementation of the proposed method advisable.

    Topics: Analytic Sample Preparation Methods; Apigenin; Glucosides; Hot Temperature; Hydrogen-Ion Concentration; Iridoid Glucosides; Iridoids; Luteolin; Olea; Phenols; Plant Leaves; Pyrans; Reproducibility of Results

2006