oleuropein-aglycone has been researched along with 3-4-dihydroxyphenylethanol* in 6 studies
6 other study(ies) available for oleuropein-aglycone and 3-4-dihydroxyphenylethanol
Article | Year |
---|---|
EVOO Polyphenols Relieve Synergistically Autophagy Dysregulation in a Cellular Model of Alzheimer's Disease.
(1) Background: Autophagy, the major cytoplasmic process of substrate turnover, declines with age, contributing to proteostasis decline, accumulation of harmful protein aggregates, damaged mitochondria and to ROS production. Accordingly, abnormalities in the autophagic flux may contribute to many different pathophysiological conditions associated with ageing, including neurodegeneration. Recent data have shown that extra-virgin olive oil (EVOO) polyphenols stimulate cell defenses against plaque-induced neurodegeneration, mainly, through autophagy induction. (2) Methods: We carried out a set of in vitro experiments on SH-SY5Y human neuroblastoma cells exposed to toxic Aβ Topics: Acetates; Alzheimer Disease; Amyloid beta-Peptides; Autophagy; Cell Line; Cyclopentane Monoterpenes; Diet, Mediterranean; Humans; Mitochondria; Models, Neurological; Nerve Degeneration; Neurons; Olive Oil; Peptide Fragments; Phenylethyl Alcohol; Polyphenols; Proteasome Endopeptidase Complex; Pyrans; Reactive Oxygen Species; Ubiquitin | 2021 |
Insight into the molecular mechanism underlying the inhibition of α-synuclein aggregation by hydroxytyrosol.
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the elderly people. To date, drugs able to reverse the disease are not available; the gold standard is levodopa that only relieves clinical symptoms, yet with severe side effects after prolonged administration. Many efforts are underway to find alternative targets for PD prevention or treatment, the most promising being α-synuclein (Syn). Recently, we reported that oleuropein aglycone (OleA) interferes with amyloid aggregation of Syn both stabilizing its monomeric state and inducing the formation of harmless, off-pathway oligomers. This study is focused at describing the interaction between Syn and hydroxytyrosol (HT), the phenolic moiety and main metabolite of OleA, and the interferences with Syn aggregation by using biophysical and biological techniques. Our results show that HT dose-dependently inhibits Syn aggregation and that covalent and non-covalent binding mediate HT-Syn interaction. HT does not modify the natively unfolded structure of Syn, rather, it stabilizes specific regions of the molecule leading to inhibition of protein fibrillation. Cellular assays showed that HT reduces the toxicity of Syn aggregates. Moreover, Syn aggregates interaction with the cell membrane, an important factor for prion-like properties of Syn on-pathway oligomers, was reduced in cells exposed to Syn aggregates grown in the presence of HT. Topics: Acetates; alpha-Synuclein; Antioxidants; Antiparkinson Agents; Cell Line, Tumor; Cell Survival; Cyclopentane Monoterpenes; Humans; Levodopa; Molecular Structure; Parkinson Disease; Phenylethyl Alcohol; Protein Aggregation, Pathological; Protein Binding; Protein Conformation; Proteolysis; Pyrans | 2020 |
Healthspan Maintenance and Prevention of Parkinson's-like Phenotypes with Hydroxytyrosol and Oleuropein Aglycone in
Numerous studies highlighted the beneficial effects of the Mediterranean diet (MD) in maintaining health, especially during ageing. Even neurodegeneration, which is part of the natural ageing process, as well as the foundation of ageing-related neurodegenerative disorders like Alzheimer's and Parkinson's disease (PD), was successfully targeted by MD. In this regard, olive oil and its polyphenolic constituents have received increasing attention in the last years. Thus, this study focuses on two main olive oil polyphenols, hydroxytyrosol (HT) and oleuropein aglycone (OLE), and their effects on ageing symptoms with special attention to PD. In order to avoid long-lasting, expensive, and ethically controversial experiments, the established invertebrate model organism Topics: Acetates; alpha-Synuclein; Animals; Animals, Genetically Modified; Caenorhabditis elegans; Cyclopentane Monoterpenes; Disease Models, Animal; Dopaminergic Neurons; Parkinson Disease; Phenylethyl Alcohol; Polyphenols; Pyrans; Treatment Outcome | 2020 |
Inhibition of human islet amyloid polypeptide aggregation and cellular toxicity by oleuropein and derivatives from olive oil.
Loss of β-cell function and β-cell death is the key feature of type 2 diabetes mellitus (T2DM). One hypothesis for the mechanism of this feature is amyloid formation by the human islet amyloid polypeptide (hIAPP). Despite the global prevalence of T2DM, there are no therapeutic strategies for the treatment of or prevention of amylin amyloidosis. Clinical trials and population studies indicate the healthy virtues of the Mediterranean diet, especially the extra virgin olive oil (EVOO) found in this diet. This oil is enriched in phenolic compounds shown to be effective against several aging and lifestyle diseases. Oleuropein (Ole), one of the most abundant polyphenols in EVOO, has been reported to be anti-diabetic. Some of Ole's main derivative have attracted our interest due to their multi-targetted effects, including interference with amyloid aggregation path. However, the structure-function relationship of Ole and its metabolites in T2DM are not yet clear. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which tyrosol (TYR), hydroxytyrosol (HT), oleuropein (Ole) and oleuropein aglycone (OleA) modulate the hIAPP fibrillation in vitro and their effects on cell cytotoxicity. The OleA formed by enolic acid and hydroxytyrosol moiety was found to be more active than the Ole and HT at low micromolar concentrations. We further demonstrated that OleA inhibit the cytotoxicity induced by hIAPP aggregates by protecting more the cell membrane from permeabilization and then from death. These findings highlight the benefits of consuming EVOO and the great potential of its polyphenols, mainly OleA. Moreover, they support the possibility to validate and optimize the possible pharmacological use of EVOO polyphenols for T2DM prevention and therapy and also for many other amyloid related diseases. Topics: Acetates; Cell Survival; Cyclopentane Monoterpenes; Diabetes Mellitus, Type 2; Diet, Mediterranean; Fluorescence; Humans; Inhibitory Concentration 50; Iridoid Glucosides; Iridoids; Islet Amyloid Polypeptide; Islets of Langerhans; Microscopy, Atomic Force; Olive Oil; Phenylethyl Alcohol; Phospholipids; Pyrans; Structure-Activity Relationship | 2020 |
Oleuropein aglycone and hydroxytyrosol interfere differently with toxic Aβ
Topics: Acetates; Amyloid beta-Peptides; Biophysical Phenomena; Cell Line, Tumor; Cyclopentane Monoterpenes; Humans; Neuroblastoma; Oxidative Stress; Peptide Fragments; Phenylethyl Alcohol; Pyrans | 2019 |
Evaluation of phenolic composition and antioxidant activity changes in olive flowers during development using HPLC/DAD and LC-MS/MS.
Olive fruit and leaves have been extensively studied for their chemical compositions and biological activities. However, less attention has been given to its flowers. The present research was achieved on Tunisian olive flowers. It aimed at studying the effects of flower development on phenolic compounds and antioxidant activity. The extracts were analyzed using high performance liquid chromatography coupled to diode array detection (HPLC/DAD) and coupled to mass spectrometry (LC-MS/MS). The HPLC/DAD analysis indicated that oleuropein aglycon (from 1.158 to 3.746 g/kg), followed by hydroxytyrosol (from 0.168 to 1.581 g/kg) and oleoside (from 0.143 to 1.325 g/kg) were the predominant phenolics in olive flowers extracts during development stages. Twenty compounds have been identified, revealing the complex profile of olive flowers, composed, in order of abundance, by secoiridoids, phenolic alcohols, lignans, flavonoids and phenolic acids. Total phenolic contents increased from 2.455 to 8.541 g/kg Gallic acid equivalent per kg of fresh flowers during all steps of the flower development. A correlation between antioxidant activity and total phenolic contents was determined. Topics: Acetates; Antioxidants; Chromatography, High Pressure Liquid; Cyclopentane Monoterpenes; Flavonoids; Flowers; Fruit; Hydroxybenzoates; Iridoids; Lignans; Olea; Phenols; Phenylethyl Alcohol; Plant Leaves; Pyrans; Tandem Mass Spectrometry | 2018 |