oleic acid has been researched along with 13-hydroxy-9,11-octadecadienoic acid in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (50.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Kang, LT; Vanderhoek, JY | 1 |
Askari, B; Bornfeldt, KE; Capparelli, M; Carroll, MA; Gerrity, RG; Kramer, F | 1 |
2 other study(ies) available for oleic acid and 13-hydroxy-9,11-octadecadienoic acid
Article | Year |
---|---|
Mono (S) hydroxy fatty acids: novel ligands for cytosolic actin.
Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; Actins; Amino Acid Sequence; Animals; Arachidonate 15-Lipoxygenase; Biotinylation; Carrier Proteins; Cytosol; Dinoprost; Fatty Acid-Binding Protein 7; Fatty Acid-Binding Proteins; Hydroxyeicosatetraenoic Acids; Kinetics; Leukemia, Basophilic, Acute; Ligands; Linoleic Acid; Linoleic Acids; Molecular Sequence Data; Myelin P2 Protein; Neoplasm Proteins; Nerve Tissue Proteins; Oleic Acid; Rats; Stearic Acids; Stereoisomerism; Structure-Activity Relationship; Tumor Cells, Cultured | 1998 |
Oleate and linoleate enhance the growth-promoting effects of insulin-like growth factor-I through a phospholipase D-dependent pathway in arterial smooth muscle cells.
Topics: Animals; Arteries; Cell Division; Cell Membrane; Diabetes Mellitus, Experimental; DNA; Endothelium, Vascular; Immunohistochemistry; Insulin-Like Growth Factor I; Linoleic Acid; Linoleic Acids; Lipid Metabolism; Models, Biological; Muscle, Smooth; Oleic Acid; Phospholipase D; Phosphorylation; Swine; Thymidine; Time Factors; Triglycerides | 2002 |