oleanolic acid has been researched along with taraxerol in 53 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (3.77) | 18.7374 |
1990's | 5 (9.43) | 18.2507 |
2000's | 17 (32.08) | 29.6817 |
2010's | 26 (49.06) | 24.3611 |
2020's | 3 (5.66) | 2.80 |
Authors | Studies |
---|---|
Chin, YW; Jee, JG; Jeong, YJ; Keum, YS; Kim, Y; Lee, J; Lee, JM; Yu, MS | 1 |
Ahn, HC; Cho, SC; Choi, BY; Fei, X; Keum, YS; Kim, HJ; Lee, K; Seo, SY | 1 |
Fang, X; Si, X; Wei, S; Wu, W; Xu, X | 1 |
Li, B; Xu, LZ; Yang, XJ | 1 |
Williams, LA | 1 |
Benavides, GA; Billodeaux, DR; Fischer, NH; Fronczek, FR | 1 |
Liu, D; Yang, J | 1 |
Chen, RY; Wang, S; Yu, DQ; Zhang, HL | 1 |
BANERJEE, SK; CHAKRAVARTI, RN | 1 |
Bashall, A; Bligh, SW; Crowder, J; Misar, AV; Mujumdar, AM; Naik, DG; Waghole, RJ | 1 |
Baek, NI; Kim, DK; Lee, JH; Lee, KT; Yang, JH | 1 |
Xiang, Y; Zhang, C; Zheng, Y | 1 |
Gao, LM; He, YQ; Wei, XM | 1 |
Ahn, KS; Jeong, GS; Joung, H; Lee, HK; Lee, SK; Li, G; Min, BS; Na, MK; Oh, SR | 1 |
Feng, ZM; Wang, YH; Zhang, PC | 1 |
Hao, XJ; Kang, WY; Li, L; Xu, QT; Zhang, BR | 1 |
Shen, DF; Wei, J; Yang, B; Yang, XS; Zhu, HY | 1 |
Bao, GM; Ji, NY; Li, XM; Tian, MQ; Wang, BG | 1 |
Cloutier, JB; Jaffé, R; Neto, RR; Simoneit, BR; Xu, Y | 1 |
Chen, H; Li, HB; Li, P; Yang, XH; Ye, BP | 1 |
Cui, BS; Li, HY; Li, S; Shi, Y; Yuan, Y | 1 |
Lu, RM; Su, X; Wei, JH; Zhou, YY | 1 |
Anand, S; Balakrishnan, A; Lakshmi, BS; Muthusamy, VS; Nithya, N; Sangeetha, KN; Sujatha, S; Velmurugan, D | 1 |
Deng, B; Ge, YH; Hao, XJ; Jiang, CY; Mu, SZ; Zhang, JX | 1 |
Chen, Y; Li, YF; Tian, XJ; Yang, GZ | 1 |
Chen, XG; Cui, BS; Li, S; Shang, XY; Shi, JG; Shi, Y; Yang, YC; Yuan, Y | 1 |
DUNSTAN, WJ; HUGHES, GK; SMITHSON, NL | 1 |
Han, H; Jetter, R; Wang, Z; Yeats, T | 1 |
Chen, YS; Lin, XY; Xie, JM; Yao, H; Zhang, YH | 1 |
Csupor-Löffler, B; Forgo, P; Hajdú, Z; Hohmann, J; Kele, Z; Molnár, J; Vasas, A; Zupkó, I | 1 |
Ji, G; Shi, HL; Tan, B; Xie, JQ | 1 |
Chand, PK; Rout, KK; Swain, SS | 1 |
Jyothi Kumari, P; Lakshmi, BS; Sangeetha, KN; Shilpa, K | 1 |
Bai, Q; Li, G; Lü, C; Xu, H; Yao, X | 1 |
Bao, H; Liu, YM; Tian, D; Wang, JX; Zhao, GL | 1 |
Kaennakam, S; Khumkratok, S; Sichaem, J; Siripong, P; Tip-pyang, S | 1 |
Ahmat, N; Al Muqarrabun, LM; Aris, SR; Norizan, N; Salim, F; Shamsulrijal, N; Suratman, MN; Yusof, FZ; Yusof, MI | 1 |
Hu, HJ; Liu, Q; Wang, ZT; Yang, L; Yang, YB | 1 |
Sharma, K; Zafar, R | 1 |
Ango, PY; Demirtas, I; Fotso, GW; Fozing, CD; Kapche, DW; Mapitse, R; Ngadjui, BT; Yeboah, EM; Yeboah, SO | 1 |
Braz Filho, R; dos Santos, FR; Vieira, IJ; Vieira, MG | 1 |
Bhattacharjee, N; Dewanjee, S; Dua, TK; Khanra, R | 1 |
Bhattacharjee, N; Dewanjee, S; Dua, TK; Kalita, J; Khanra, R; Manna, P; Nandy, A; Saha, A | 1 |
Aiba, Y; Hoshino, T; Nakano, C; Terasawa, Y; Watanabe, T | 1 |
Berté, TE; Bürger, C; Cechinel-Filho, V; Dalmagro, AP; de Souza, MM; Dos Santos, DA; Gonçalves, AE; Meyre-Silva, C; Weber, CJ; Zimath, PL | 1 |
Bhattacharya, D; Chakravarty, S; Nithyamol Kalappurakkal, V; Venkata Uppuluri, M | 1 |
Dai, TD; Delfino, DV; Hoang Anh, NT; Lieu, N; Quan, TD; Sa, NH; Tam, NT; Thang, LQ; Thien, DD; Thuy, TT | 1 |
Choi, YE; Han, JY; Jo, HJ; Kwon, EK | 1 |
Chavasiri, W; Duong, TH; Jongaramruong, J; Nguyen, VK; Niamnont, N; Sichaem, J; Tran, TN | 1 |
Chaicharoenpong, C; Chunhakant, S | 1 |
Lakshmi, BS; SarathKumar, B | 1 |
Lu, W; Pai, H; Tan, J; Zhang, C | 1 |
Chen, L; Huang, D; Li, C; Li, ZH; Min, L; Xia, YT; Zhang, Y; Zhang, YQ | 1 |
53 other study(ies) available for oleanolic acid and taraxerol
Article | Year |
---|---|
Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13.
Topics: Adenosine Triphosphate; Antiviral Agents; Apigenin; Breast; Cell Line; Cell Proliferation; Colorimetry; DNA; DNA Helicases; Epithelial Cells; Female; Flavonoids; Fluorescence Resonance Energy Transfer; Hepacivirus; Humans; Hydrolysis; Inhibitory Concentration 50; Kinetics; Methyltransferases; RNA Helicases; Severe acute respiratory syndrome-related coronavirus; Species Specificity; Viral Nonstructural Proteins; Viral Proteins | 2012 |
Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1.
Topics: Binding, Competitive; Drug Discovery; Humans; Isocitrate Dehydrogenase; MCF-7 Cells; Molecular Structure; Mutation; Recombinant Proteins; Structure-Activity Relationship; Xanthones | 2015 |
[Chemical constituents in the leaves of Mangifera persiciformis C.Y. Wu et Y.L. Ming].
Topics: Antiviral Agents; Drugs, Chinese Herbal; Oleanolic Acid; Plant Leaves; Plants, Medicinal; Sitosterols; Xanthenes; Xanthones | 1995 |
[Chemical constituents of Sageretia theezans Brongn].
Topics: Benzoates; Drugs, Chinese Herbal; Glucosides; Oleanolic Acid | 1994 |
Rhizophora mangle (Rhizophoraceae) triterpenoids with insecticidal activity.
Topics: Animals; Insecta; Insecticides; Oleanolic Acid; Pest Control, Biological; Plant Leaves; Plant Stems; Triterpenes | 1999 |
Taraxerol acetate at 100 K.
Topics: Crystallography, X-Ray; Models, Molecular; Molecular Conformation; Oleanolic Acid; Plant Extracts; Plant Roots; Triterpenes | 1999 |
[A study on chemical components of Tetrastigma hemsleyanum Diels et Gilg. Native to China].
Topics: Ergosterol; Oleanolic Acid; Plants, Medicinal; Sitosterols; Vitaceae | 1999 |
[Studies on chemical constituents of Uvaria macrophylia].
Topics: Flavonoids; Molecular Structure; Oleanolic Acid; Plant Roots; Plants, Medicinal; Sitosterols; Uvaria | 2002 |
TARAXEROL FROM CLITORIA TERNATEA LINN.
Topics: Chemical Phenomena; Chemistry; Clitoria; Oleanolic Acid; Plants, Medicinal; Research | 1963 |
Taraxer-14-en-3beta-ol, an anti-inflammatory compound from Sterculia foetida L.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Edema; Male; Mice; Oleanolic Acid; Phytotherapy; Plant Extracts; Plant Leaves; Sterculia | 2004 |
Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel.
Topics: Acetylcholine; Animals; Berberine; Biological Assay; Brain; Cholinesterase Inhibitors; Drug Evaluation, Preclinical; Korea; Male; Medicine, East Asian Traditional; Methanol; Mice; Molecular Structure; Oleanolic Acid; Phytotherapy; Plant Extracts; Plant Stems; Plants, Medicinal; Scopoletin; Tacrine; Vaccinium | 2004 |
Studies on the chemical constituents of the roots of Rhododendron molle G. Don.
Topics: Diterpenes; Drugs, Chinese Herbal; Oleanolic Acid; Plant Roots; Rhododendron; Sitosterols | 2004 |
[Studies on chemical constituents of Clerodendrum bungei].
Topics: Clerodendrum; Oleanolic Acid; Plant Roots; Plants, Medicinal; Sitosterols | 2003 |
New furofuran and butyrolactone lignans with antioxidant activity from the stem bark of Styrax japonica.
Topics: 4-Butyrolactone; Antioxidants; Biphenyl Compounds; Furans; Glucosides; Glycosides; Korea; Lignans; Molecular Structure; Oleanolic Acid; Phenylpropionates; Picrates; Plant Bark; Plants, Medicinal; Stereoisomerism; Styrax | 2004 |
The chemical constituents of Rhododendron ovatum Planch.
Topics: Chromans; Glycosides; Molecular Conformation; Molecular Structure; Monosaccharides; Oleanolic Acid; Plant Roots; Plants, Medicinal; Quercetin; Rhododendron | 2005 |
[Study on the chemical constituents of Mitragyna rotundifolia].
Topics: Alkaloids; Caffeic Acids; Mitragyna; Oleanolic Acid; Plant Bark; Plants, Medicinal; Sitosterols; Spectrophotometry, Ultraviolet | 2006 |
[Studies on the chemical constituents of Vaccinium iteophyllum].
Topics: Acetates; Drugs, Chinese Herbal; Oleanolic Acid; Plant Leaves; Plant Stems; Plants, Medicinal; Sitosterols; Triterpenes; Vaccinium | 2007 |
[Triterpenoids and steroids from Excoecaria agallocha].
Topics: Euphorbiaceae; Magnetic Resonance Spectroscopy; Oleanolic Acid; Sitosterols; Steroids; Triterpenes | 2008 |
Photochemical alteration of 3-oxygenated triterpenoids: implications for the origin of 3,4-seco-triterpenoids in sediments.
Topics: Ecosystem; Gas Chromatography-Mass Spectrometry; Geologic Sediments; Oleanolic Acid; Photochemical Processes; Plant Leaves; Rhizophoraceae; Sunlight; Triterpenes | 2009 |
[Chemical constituents in the leave of Rhizophora stylosa L and their biological activities].
Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Cell Proliferation; Flavonols; Humans; Inhibitory Concentration 50; Lymphocytes; Mice; Molecular Structure; Oleanolic Acid; Plant Leaves; Rhizophoraceae; Rutin; Spleen; Triterpenes | 2008 |
[Studies on chemical constituents from roots of Pterospermum heterophyllum].
Topics: Betulinic Acid; Chromatography; Malvaceae; Naphthoquinones; Oleanolic Acid; Palmitic Acid; Pentacyclic Triterpenes; Plant Roots; Sitosterols; Triterpenes | 2008 |
[Study on the chemical constituents of Uvaria microcarpa].
Topics: Emodin; Glucosides; Molecular Structure; Oleanolic Acid; Plant Stems; Plants, Medicinal; Sitosterols; Spectrophotometry, Ultraviolet; Stigmasterol; Uvaria | 2009 |
3beta-taraxerol of Mangifera indica, a PI3K dependent dual activator of glucose transport and glycogen synthesis in 3T3-L1 adipocytes.
Topics: 3T3 Cells; Adipocytes; Animals; Blood Glucose; Cell Survival; Deoxyglucose; Diabetes Mellitus, Type 2; Enzyme Activation; Glucose; Glycogen; Humans; Insulin Resistance; Mangifera; Mice; Oleanolic Acid; Phosphatidylinositol 3-Kinases; Plant Extracts | 2010 |
[Studies on the chemical constituents from Euphorbia chrysocoma].
Topics: Dioxoles; Diterpenes; Euphorbia; Lignans; Molecular Structure; Oleanolic Acid; Plant Components, Aerial; Plants, Medicinal; Sitosterols | 2009 |
[Terpenoids from Euphorbia antiquorum L.].
Topics: Euphorbia; Molecular Structure; Oleanolic Acid; Plants, Medicinal; Terpenes | 2009 |
Triterpenoids from the roots of Pterospermum heterophyllum Hance.
Topics: Antineoplastic Agents, Phytogenic; Betulinic Acid; Drug Screening Assays, Antitumor; Drugs, Chinese Herbal; Female; Humans; Malvaceae; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Oleanolic Acid; Palmitic Acid; Pentacyclic Triterpenes; Plant Roots; Sitosterols; Stereoisomerism; Terpenes; Triterpenes | 2009 |
A new source of taraxerol.
Topics: Humans; Oleanolic Acid | 1947 |
Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids.
Topics: Base Sequence; Catalysis; Cloning, Molecular; Kalanchoe; Molecular Sequence Data; Oleanolic Acid; Pentacyclic Triterpenes; Phytosterols; Plant Leaves; Recombinant Proteins; Saccharomyces cerevisiae; Triterpenes | 2010 |
[Studies on the triterpenoids of Vitex trifolia].
Topics: Betulinic Acid; Ethanol; Molecular Structure; Oleanolic Acid; Pentacyclic Triterpenes; Plants, Medicinal; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; Triterpenes; Ursolic Acid; Vitex | 2010 |
Antiproliferative constituents of the roots of Conyza canadensis.
Topics: Antineoplastic Agents, Phytogenic; Apigenin; Cell Line, Tumor; Chemical Fractionation; Chromatography, High Pressure Liquid; Conyza; Female; Humans; Hydroxy Acids; Magnetic Resonance Spectroscopy; Molecular Structure; Oils, Volatile; Oleanolic Acid; Oleic Acids; Plant Extracts; Plant Roots; Pyrones; Sitosterols; Stigmasterol | 2011 |
[Effects of taraxerol and taraxerol acetate on cell cycle and apoptosis of human gastric epithelial cell line AGS].
Topics: Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Epithelial Cells; Humans; Oleanolic Acid; Stomach Neoplasms; Triterpenes | 2011 |
Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.).
Topics: Agrobacterium; Antineoplastic Agents; Cells, Cultured; Oleanolic Acid; Pisum sativum; Plant Roots; Plants, Genetically Modified; Transformation, Genetic | 2012 |
Reversal of dexamethasone induced insulin resistance in 3T3L1 adipocytes by 3β-taraxerol of Mangifera indica.
Topics: 3T3-L1 Cells; Adipocytes; Animals; Biomarkers; Dexamethasone; Disease Models, Animal; Drug Evaluation, Preclinical; Glucose; Glucose Transporter Type 4; Hyperinsulinism; Hypoglycemic Agents; Insulin Resistance; Mangifera; Mice; Oleanolic Acid; Phosphatidylinositol 3-Kinases; Phytotherapy; Plant Extracts; Rosiglitazone; Thiazolidinediones | 2013 |
Taraxerol inhibits LPS-induced inflammatory responses through suppression of TAK1 and Akt activation.
Topics: Active Transport, Cell Nucleus; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Line; Cyclooxygenase 2; Cytokines; Dinoprostone; Down-Regulation; Inflammation; Lipopolysaccharides; Macrophages; MAP Kinase Kinase Kinases; MAP Kinase Signaling System; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Oleanolic Acid; Oncogene Protein v-akt; RNA, Messenger | 2013 |
[Study on chemical constituents of root bark of Discocleidion rufescens].
Topics: Alkaloids; Anthraquinones; Euphorbiaceae; Gallic Acid; Luteolin; Molecular Structure; Oleanolic Acid; Plant Bark; Plant Roots; Pyridones; Scopoletin; Sitosterols; Spectrophotometry, Infrared | 2012 |
A new taraxerol derivative from the roots of Microcos tomentosa.
Topics: Drug Screening Assays, Antitumor; HeLa Cells; Humans; KB Cells; Oleanolic Acid; Plant Roots; Plants, Medicinal; Tiliaceae | 2013 |
A new triterpenoid from Sapium baccatum (Euphorbiaceae).
Topics: 3T3 Cells; Algorithms; Animals; Antineoplastic Agents, Phytogenic; Drug Screening Assays, Antitumor; HT29 Cells; Humans; Mice; Molecular Structure; Oleanolic Acid; Plant Leaves; Plant Stems; Sapium; Spectroscopy, Fourier Transform Infrared; Triterpenes | 2014 |
[Chemical constituents of Clerodendrum trichotomum Leaves].
Topics: Betulinic Acid; Clerodendrum; Indoles; Oleanolic Acid; Pentacyclic Triterpenes; Plant Leaves; Sitosterols; Sterols; Stigmasterol; Triterpenes | 2014 |
Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures.
Topics: Acetates; beta-Cyclodextrins; Culture Media; Cyclopentanes; Oleanolic Acid; Oxylipins; Plant Roots; Plants, Medicinal; Seedlings; Sterols; Taraxacum; Time Factors; Triterpenes | 2016 |
Thonningiiflavanonol A and thonningiiflavanonol B, two novel flavonoids, and other constituents of Ficus thonningii Blume (Moraceae).
Topics: Antioxidants; Ficus; Flavanones; Flavonoids; Gallic Acid; Genistein; Luteolin; Magnetic Resonance Spectroscopy; Molecular Structure; Oleanolic Acid; Parabens; Plant Bark; Plant Extracts; Plant Roots; Plant Stems; Quercetin; Sitosterols | 2016 |
Chemical Constituents of Trichilia hirta (Meliaceae).
Topics: Meliaceae; Molecular Structure; Oleanolic Acid; Triterpenes | 2016 |
Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling.
Topics: Animals; Carrageenan; Cytokines; Edema; Inflammation; Inflammation Mediators; Malvaceae; NF-kappa B; Oleanolic Acid; Plant Leaves; Rats, Wistar; Signal Transduction; Triterpenes | 2017 |
Taraxerol, a pentacyclic triterpenoid, from Abroma augusta leaf attenuates diabetic nephropathy in type 2 diabetic rats.
Topics: Animals; Computer Simulation; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Disease Progression; Hyperglycemia; Inflammation; Malvaceae; Molecular Docking Simulation; Oleanolic Acid; Plant Leaves; Rats; Rats, Wistar; Streptozocin; Up-Regulation | 2017 |
Strictly Conserved Residues in Euphorbia tirucalli β-Amyrin Cyclase: Trp612 Stabilizes Transient Cation through Cation-π Interaction and CH-π Interaction of Tyr736 with Leu734 Confers Robust Local Protein Architecture.
Topics: Biosynthetic Pathways; Cations; Cyclization; Enzyme Stability; Euphorbia; Intramolecular Transferases; Models, Molecular; Mutagenesis; Oleanolic Acid; Point Mutation; Protein Conformation; Tryptophan | 2018 |
Taraxerol as a possible therapeutic agent on memory impairments and Alzheimer's disease: Effects against scopolamine and streptozotocin-induced cognitive dysfunctions.
Topics: Acetylcholinesterase; Alzheimer Disease; Animals; Avoidance Learning; Cognitive Dysfunction; Male; Maze Learning; Memory; Oleanolic Acid; Rats; Rats, Wistar; Scopolamine; Streptozocin | 2018 |
Isolation, Synthesis and AChE Inhibitory Potential of Some Novel Cinnamyl Esters of Taraxerol, the Major Metabolite of the Mangrove Bruguiera cylindrica.
Topics: Acetylcholinesterase; Animals; Cell Line, Tumor; Cell Survival; Cholinesterase Inhibitors; Cinnamates; Dose-Response Relationship, Drug; Esters; Mice; Molecular Structure; Neurons; Oleanolic Acid; Rhizophoraceae; Structure-Activity Relationship | 2018 |
A new oleanane triterpene from the leaves of
Topics: Ficus; Molecular Structure; Oleanolic Acid; Plant Extracts; Plant Leaves; Spectrum Analysis; Triterpenes | 2019 |
Cloning and Characterization of Oxidosqualene Cyclases Involved in Taraxasterol, Taraxerol and Bauerenol Triterpene Biosynthesis in Taraxacum coreanum.
Topics: Cloning, Molecular; Gene Expression Profiling; Genes, Plant; Intramolecular Transferases; Metabolic Networks and Pathways; Oleanolic Acid; Phylogeny; Plant Leaves; Plant Proteins; Plant Roots; Sterols; Taraxacum; Triterpenes | 2019 |
A new ent-atisane diterpenoid from the aerial parts of
Topics: Diterpenes; Euphorbia; Magnetic Resonance Spectroscopy; Molecular Structure; Oleanolic Acid; Plant Components, Aerial | 2021 |
Antityrosinase, Antioxidant, and Cytotoxic Activities of Phytochemical Constituents from
Topics: Antioxidants; Arbutin; Cell Line, Tumor; Cell Proliferation; Flavonoids; Humans; Hydroxybenzoates; Manilkara; Monophenol Monooxygenase; Neoplasms; Oleanolic Acid; Phytochemicals; Pyrones; Stigmasterol | 2019 |
In silico investigations on the binding efficacy and allosteric mechanism of six different natural product compounds towards PTP1B inhibition through docking and molecular dynamics simulations.
Topics: Allosteric Site; Animals; Caffeic Acids; Catalytic Domain; Chlorogenic Acid; Enzyme Inhibitors; Humans; Molecular Docking Simulation; Molecular Dynamics Simulation; Oleanolic Acid; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Succinates | 2019 |
Heterologous biosynthesis of taraxerol by engineered Saccharomyces cerevisiae.
Topics: Metabolic Engineering; Oleanolic Acid; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Triterpenes | 2022 |
Suppression of migration and invasion by taraxerol in the triple-negative breast cancer cell line MDA-MB-231 via the ERK/Slug axis.
Topics: Cell Line; Humans; Molecular Docking Simulation; Oleanolic Acid; Triple Negative Breast Neoplasms | 2023 |