oleanane and beta-amyrin

oleanane has been researched along with beta-amyrin* in 3 studies

Other Studies

3 other study(ies) available for oleanane and beta-amyrin

ArticleYear
Identification of oxidosqualene cyclases associated with saponin biosynthesis from Astragalus membranaceus reveals a conserved motif important for catalytic function.
    Journal of advanced research, 2023, Volume: 43

    Triterpenoids and saponins have a broad range of pharmacological activities. Unlike most legumes which contain mainly oleanane-type scaffold, Astragalus membranaceus contains not only oleanane-type but also cycloartane-type saponins, for which the biosynthetic pathways are unknown.. This work aims to study the function and catalytic mechanism of oxidosqualene cyclases (OSCs), one of the most important enzymes in triterpenoid biosynthesis, in A. membranaceus.. Two OSC genes, AmOSC2 and AmOSC3, were cloned from A. membranaceus. Their functions were studied by heterologous expression in tobacco and yeast, together with in vivo transient expression and virus-induced gene silencing. Site-directed mutagenesis and molecular docking were used to explain the catalytic mechanism for the conserved motif.. AmOSC2 is a β-amyrin synthase which showed higher expression levels in underground parts. It is associated with the production of β-amyrin and soyasaponins (oleanane-type) in vivo. AmOSC3 is a cycloartenol synthase expressed in both aerial and underground parts. It is related to the synthesis of astragalosides (cycloartane-type) in the roots, and to the synthesis of cycloartenol as a plant sterol precursor. From AmOSC2/3, conserved triad motifs VFM/VFN were discovered for β-amyrin/cycloartenol synthases, respectively. The motif is a critical determinant of yield as proved by 10 variants from different OSCs, where the variant containing the conserved motif increased the yield by up to 12.8-fold. Molecular docking and mutagenesis revealed that Val, Phe and Met residues acted together to stabilize the substrate, and the cation-π interactions from Phe played the major role.. The study provides insights into the biogenic origin of oleanane-type and cycloartane-type triterpenoids in Astragalus membranaceus. The conserved motif offers new opportunities for OSC engineering.

    Topics: Astragalus propinquus; Molecular Docking Simulation; Saponins; Triterpenes

2023
Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis.
    The New phytologist, 2017, Volume: 214, Issue:2

    The medicinal plant sweet basil (Ocimum basilicum) accumulates bioactive ursane- and oleanane-type pentacyclic triterpenes (PCTs), ursolic acid and oleanolic acid, respectively, in a spatio-temporal manner; however, the biosynthetic enzymes and their contributions towards PCT biosynthesis remain to be elucidated. Two CYP716A subfamily cytochrome P450 monooxygenases (CYP716A252 and CYP716A253) are identified from a methyl jasmonate-responsive expression sequence tag collection and functionally characterized, employing yeast (Saccharomyces cerevisiae) expression platform and adapting virus-induced gene silencing (VIGS) in sweet basil. CYP716A252 and CYP716A253 catalyzed sequential three-step oxidation at the C-28 position of α-amyrin and β-amyrin to produce ursolic acid and oleanolic acid, respectively. Although CYP716A253 was more efficient than CYP716A252 for amyrin C-28 oxidation in yeast, VIGS revealed essential roles for both of these CYP716As in constitutive biosynthesis of ursolic acid and oleanolic acid in sweet basil leaves. However, CYP716A253 played a major role in elicitor-induced biosynthesis of ursolic acid and oleanolic acid. Overall, the results suggest similar as well as distinct roles of CYP716A252 and CYP716A253 for the spatio-temporal biosynthesis of PCTs. CYP716A252 and CYP716A253 might be useful for the alternative and sustainable production of PCTs in microbial host, besides increasing plant metabolite content through genetic modification.

    Topics: Acetates; Cyclopentanes; Cytochrome P-450 Enzyme System; Expressed Sequence Tags; Gene Expression Regulation, Plant; Ocimum basilicum; Oleanolic Acid; Oxylipins; Plant Proteins; Triterpenes

2017
Total synthesis of (+)-seco-C-oleanane via stepwise controlled radical cascade cyclization.
    The Journal of organic chemistry, 2012, Jan-06, Volume: 77, Issue:1

    An asymmetric concise total synthesis of the (+)-seco-C-oleanane 1 was accomplished. The successful route to this natural product involves as the key step a stepwise regio- and stereocontrolled catalytic radical polyene cascade cyclization from preoleanatetraene oxide (16), a process mediated by Cp(2)TiCl. The use of this single-electron-transfer complex permits mild cyclization conditions without using unnecessary prefunctionalizations and stops the process at the bicyclic level. Theoretical data revealed high activation energy for the third ring closure, which would account for the control of the cyclization. This process also led to natural (-)-achilleol B, camelliol A, and (+)-seco-β-amyrin as minor compounds.

    Topics: Biological Products; Catalysis; Cyclization; Molecular Structure; Oleanolic Acid; Quantum Theory; Stereoisomerism; Triterpenes

2012