olanzapine has been researched along with epidepride* in 2 studies
2 other study(ies) available for olanzapine and epidepride
Article | Year |
---|---|
Dopamine D2/3 receptor binding potential and occupancy in midbrain and temporal cortex by haloperidol, olanzapine and clozapine.
Aberrant dopamine transmission in extrastriatal brain regions has been repeatedly illustrated among patients with schizophrenia. Differences between typical and second-generation antipsychotics in dopamine D(2) receptor modulation within various brain areas remain a topic for debate. The aim of the present study was therefore to investigate dopamine D(2/3) receptor apparent binding potential (BP(app)) and occupancy in midbrain and temporal cortex among clozapine-, olanzapine- and haloperidol-treated schizophrenia patients.. Dopamine D(2/3) binding was studied on single-photon emission computed tomography ligand [(123)I]epidepride in 13 schizophrenia patients treated with medication (two with haloperidol, four with olanzapine and seven with clozapine), six drug-naïve patients and seven healthy controls.. Statistically significant differences in midbrain dopamine D(2/3) receptor BP(app) (P = 0.015) and occupancy (P = 0.016) were observed between the clozapine, olanzapine and haloperidol groups. The lowest occupancy was found in clozapine-treated patients (5%), followed by olanzapine-treated patients (28%), compared to haloperidol-treated patients (40%). No significant differences were observed in the temporal poles. Occupancy changed substantially depending on the comparison group used (either drug-naïve vs healthy controls) in the examined brain areas (P = 0.001), showing an overestimation with all antipsychotics when the healthy control group was used.. Both typical and second-generation antipsychotics occupy cortical dopamine D(2/3) receptors, thus mediating therapeutic efficacy. Observed differences in midbrain dopamine D(2/3) occupancy between classical antipsychotics and second-generation antipsychotics may have clinical relevance by modulating altered nigrostriatal dopamine neurotransmission during the acute phase of schizophrenia. Topics: Adult; Antipsychotic Agents; Benzamides; Benzodiazepines; Clozapine; Female; Haloperidol; Humans; Iodine Radioisotopes; Male; Mesencephalon; Middle Aged; Olanzapine; Pyrrolidines; Receptors, Dopamine D2; Receptors, Dopamine D3; Schizophrenia; Temporal Lobe; Tomography, Emission-Computed, Single-Photon | 2009 |
Striatal and temporal cortical D2/D3 receptor occupancy by olanzapine and sertindole in vivo: a [123I]epidepride single photon emission tomography (SPET) study.
Previous work suggests clozapine preferentially targets limbic cortical dopamine systems, which could help account for its lack of extrapyramidal side effects (EPS) and superior therapeutic efficacy.. To test the hypothesis that olanzapine, a novel atypical antipsychotic drug, occupies temporal cortical D2/D3 receptors to a greater extent than striatal D2/D3 receptors in vivo.. Nine schizophrenic patients taking either olanzapine [(n=5; mean (SD) age: 32.5 (6.5) years; daily dose: 18.3 (2.6) mg] or sertindole [(n=4; mean (SD) age: 30.3 (7.4) years; daily dose: 16 (5.6) mg] were studied with [123I]epidepride ((S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-5-iodo-2,3-dimethoxybenz amide) and single photon emission tomography (SPET). An estimate of [123I]epidepride 'specific binding' to D2/D3 receptors was obtained in patients and age-matched healthy volunteers. A summary measure was generated representing striatal and temporal cortical relative %D2/D3 receptor occupancy by antipsychotic drugs. Occupancy data were compared with previously studied groups of patients receiving typical antipsychotic drugs (n=12) and clozapine (n=10).. Mean striatal and temporal cortical %D2/D3 receptor occupancy in olanzapine-treated patients was 41.3% (SD 17.9) and 82.8% (SD 4.2), respectively. Unexpectedly low levels of striatal relative %D2/D3 receptor occupancy were seen in two patients with typical antipsychotic-drug-induced movement disorder prior to switching to olanzapine. In the temporal cortex, mean D2/D3 dopamine receptor occupancy levels above 80% were seen for all antipsychotic drugs studied.. The atypical antipsychotic drugs olanzapine and sertindole, in common with clozapine, demonstrate higher occupancy of temporal cortical than striatal D2/D3 dopamine receptors in vivo at clinically useful doses. This could help mediate their atypical clinical profile of therapeutic efficacy with few extrapyramidal side effects. Limbic selective blockade of D2/D3 dopamine receptors could be a common action of atypical antipsychotic drugs. Topics: Adult; Analysis of Variance; Antipsychotic Agents; Benzamides; Benzodiazepines; Corpus Striatum; Female; Humans; Imidazoles; Indoles; Iodine Radioisotopes; Male; Middle Aged; Olanzapine; Pirenzepine; Pyrrolidines; Receptors, Dopamine D2; Receptors, Dopamine D3; Schizophrenia; Temporal Lobe; Tomography, Emission-Computed | 2000 |