okadaic-acid has been researched along with methyllycaconitine* in 3 studies
3 other study(ies) available for okadaic-acid and methyllycaconitine
Article | Year |
---|---|
Differential coupling of M1 muscarinic and alpha7 nicotinic receptors to inhibition of pemphigus acantholysis.
The mechanisms mediating and regulating assembly and disassembly of intercellular junctions is a subject of intensive research. The IgG autoantibodies produced in patients with the immunoblistering skin disease pemphigus vulgaris (PV) can induce keratinocyte (KC) dyshesion (acantholysis) via mechanisms that involve signaling kinases targeting intercellular adhesion molecules, thus providing a useful model to study the physiologic regulation of KC cohesion. Previous studies showed that activation of Src and protein kinase C are the earliest events in the PV IgG-induced intracellular phosphorylation cascades and that cholinergic agonists are effective for treating patients with pemphigus. In this study, we sought to elucidate the molecular mechanisms allowing cholinergic agonists to inhibit PV IgG-induced acantholysis and phosphorylation of KC adhesion molecules. The extent of acantholysis in KC monolayers correlated closely with the degree of PV IgG-induced phosphorylation of p120- and beta-catenins, with classic isoforms of protein kinase C mediating serine phosphorylation of beta-catenin and Src-tyrosine phosphorylation of p120-catenin. The M(1) muscarinic agonist pilocarpine blocked phosphorylation of both catenins, which could be abolised by the M(1) antagonist MT7. The alpha7 nicotinic agonist AR-R17779 inhibited phosphorylation of P120-cateinin. The alpha7 antagonist methyllycaconitine abolished the effect of AR-R17779. Okadaic acid abrogated protective effects of agonists on phosphorylation of beta-catenin, and pervanadate, on that of p120-catenin. Stimulation of KCs with pilocarpine significantly (p < 0.05) elevated both serine/threonine and tyrosine phosphatase activities in KCs. AR-R17779 both stimulated tyrosine phosphatase and decreased PV IgG-induced Src activity. Methyllycaconitine released Src activity in intact KCs and caused acantholysis. Thus, downstream signaling from M(1) abolished PV IgG-dependent catenin phosphorylation due to activation of both serine/threonine and tyrosine phosphatases, whereas alpha7 action involved both activation of tyrosine phosphatase and inhibition of Src. These findings identified novel paradigm of regulation of signaling kinases associated with cholinergic receptors and provided mechanistic explanation of therapeutic activity of cholinomimetics in PV patients. Topics: Aconitine; alpha7 Nicotinic Acetylcholine Receptor; beta Catenin; Cell Adhesion; Cells, Cultured; Gene Expression Regulation; Humans; Immunoglobulin G; Keratinocytes; Models, Biological; Okadaic Acid; Pemphigus; Phosphorylation; Receptor, Muscarinic M1; Receptors, Nicotinic; src-Family Kinases | 2008 |
Nicotine reverses consolidated long-term potentiation in the hippocampal CA1 region.
Long-term potentiation (LTP) has a memory-like consolidation period during which it becomes progressively stabilized. However, it is unknown how the consolidation is achieved. The present study demonstrates that nicotine reverses stabilized LTP in the hippocampal CA1 region, providing the first evidence that consolidated LTP can be reversed. The nicotine-induced reversal appeared to work by reversing cellular processes involved in stabilizing LTP, as LTP was readily induced again after reversal. The effect of nicotine was mediated, in large part, via desensitization of alpha7 nicotinic acetylcholine receptors (nAChRs), as an alpha7 nAChR-selective antagonist mimicked the nicotine effect. A non-selective N-methyl-d-aspartate receptor (NMDAR) antagonist completely abolished the nicotine-induced reversal, whereas an NR2B-containing NMDAR-selective antagonist had no effect. Furthermore, both the protein phosphatase 1/protein phosphatase 2A inhibitor okadaic acid and the protein phosphatase 2B (calcineurin) inhibitor cyclosporin A blocked the nicotine-induced reversal. Taken together, our results suggest that the reversal of stabilized LTP depends on the activation of NR2A-containing NMDARs and dephosphorylation. Thus, the consolidation of LTP appears to be the interruption of signaling leading to NR2A-containing NMDAR-dependent activation of protein phosphatases, which can be circumvented by nicotine-induced signaling. LTP induced in chronic nicotine-treated hippocampi contained a component that is immune to reversal, and thus acute nicotine was no longer effective to reverse consolidated LTP. These results demonstrate the differential effects of acute and chronic nicotine exposure on the cellular processes that are potentially involved in learning and memory. Topics: Aconitine; Analysis of Variance; Animals; Dihydro-beta-Erythroidine; Dose-Response Relationship, Radiation; Drug Administration Schedule; Drug Interactions; Electric Stimulation; Enzyme Inhibitors; Ethers, Cyclic; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Hippocampus; In Vitro Techniques; Long-Term Potentiation; Male; Nicotine; Nicotinic Agonists; Nicotinic Antagonists; Okadaic Acid; Oxazoles; Rats; Rats, Sprague-Dawley | 2006 |
Unequal neuroprotection afforded by the acetylcholinesterase inhibitors galantamine, donepezil, and rivastigmine in SH-SY5Y neuroblastoma cells: role of nicotinic receptors.
Donepezil, rivastigmine, and galantamine are three drugs with acetylcholinesterase (AChE)-inhibiting activity that are currently being used to treat patients suffering from Alzheimer's disease. We have studied the neuroprotective effects of these drugs, in comparison with nicotine, on cell death caused by beta-amyloid (Abeta) and okadaic acid, two models that are relevant to Alzheimer's pathology, in the human neuroblastoma cell line SH-SY5Y. Galantamine and donepezil showed a U-shaped neuroprotective curve against okadaic acid toxicity; maximum protection was achieved at 0.3 microM galantamine and at 1 microM donepezil; at higher concentrations, protection was diminished. Rivastigmine showed a concentration-dependent effect; maximum protection was achieved at 3 microM. When apoptosis was induced by Abeta25-35, galantamine, donepezil, and rivastigmine showed maximum protection at the same concentrations: 0.3, 1, and 3 microM, respectively. Nicotine also afforded protection against Abeta- and okadaic acid-induced toxicity. The neuroprotective effects of galantamine, donepezil, and nicotine were reversed by the alpha7 nicotinic antagonist methyllycaconitine but not by the alpha4beta2 nicotinic antagonist dihydro-beta-erythroidine. The phosphoinositide 3-kinase (PI3K)-Akt blocker 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) reversed the protective effects of galantamine, donepezil, and nicotine but not that of rivastigmine. In contrast, the bcl-2 antagonist ethyl[2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)]-4H-chromene-3-carboxylate (HA 14-1) reversed the protective effects of the three AChE inhibitors and that of nicotine. Our results show that galantamine, donepezil, and rivastigmine afford neuroprotection through a mechanism that is likely unrelated to AChE inhibition. Such neuroprotection seemed to be linked to alpha7 nicotinic receptors and the PI3K-Akt pathway in the case of galantamine and donepezil but not for rivastigmine. Topics: Aconitine; Amyloid beta-Peptides; Apoptosis; Benzopyrans; Cell Culture Techniques; Cell Line, Tumor; Cholinesterase Inhibitors; Chromones; Donepezil; Dose-Response Relationship, Drug; Enzyme Inhibitors; Galantamine; Humans; Indans; L-Lactate Dehydrogenase; Morpholines; Neuroblastoma; Neuroprotective Agents; Nicotine; Nitriles; Okadaic Acid; Phenylcarbamates; Phosphatidylinositol 3-Kinases; Piperidines; Proto-Oncogene Proteins c-bcl-2; Receptors, Nicotinic; Rivastigmine | 2005 |