okadaic-acid and lonafarnib

okadaic-acid has been researched along with lonafarnib* in 1 studies

Other Studies

1 other study(ies) available for okadaic-acid and lonafarnib

ArticleYear
Protein farnesyltransferase inhibitor (SCH 66336) abolishes NF-kappaB activation induced by various carcinogens and inflammatory stimuli leading to suppression of NF-kappaB-regulated gene expression and up-regulation of apoptosis.
    The Journal of biological chemistry, 2004, Jun-18, Volume: 279, Issue:25

    Ras farnesyltransferase inhibitor (FTI) exhibit antiproliferative and antiangiogenic effects through a mechanism that is poorly understood. Because of the known role of Ras in the activation of transcription factor NF-kappaB and because NF-kappaB-regulated genes can control cell survival and angiogenesis, we postulated that FTI mediates its effects in part by modulating NF-kappaB activation. Therefore, in the present study we investigated the effect of FTI, SCH 66336, on NF-kappaB and NF-kappaB-regulated gene expression activated by a variety of inflammatory and carcinogenic agents. We demonstrate by DNA-binding assay that NF-kappaB activation induced by tumor necrosis factor (TNF), phorbol 12-myristate 13-acetate, cigarette smoke, okadaic acid, and H(2)O(2) was completely suppressed by SCH 66336; the suppression was not cell type-specific. This FTI suppressed the activation of IkappaBalpha kinase (IKK), thus abrogating the phosphorylation and degradation of IkappaBalpha. Additionally, TNF-activated Ras and SCH 66336 inhibited the activation. Also, overexpression of Ras (V12) enhanced TNF-induced NF-kappaB activation, and adenoviral dominant-negative Ras (N17) suppressed the activation, thus suggesting the critical role of Ras in TNF signaling. SCH 66336 also inhibited the NF-kappaB-dependent reporter gene expression activated by TNF, TNFR1, TRADD, TRAF2, NIK, and IKK but not that activated by the p65 subunit of NF-kappaB. The TNF-induced NF-kappaB-regulated gene products cyclin D1, COX-2, MMP-9, survivin, IAP1, IAP2, XIAP, Bcl-2, Bfl-1/A1, TRAF1, and FLIP were all down-regulated by SCH 66336, which potentiated apoptosis induced by TNF and doxorubicin. Overall, our results indicate that SCH 66336 inhibited activation of NF-kappaB and NF-kappaB-regulated gene expressions induced by carcinogens and inflammatory stimuli, which may provide a molecular basis for the ability of SCH 66336 to suppress proliferation and angiogenesis.

    Topics: Active Transport, Cell Nucleus; Alkyl and Aryl Transferases; Apoptosis; Blotting, Western; Carcinogens; Cell Division; Cell Line, Tumor; Cell Survival; Cytoplasm; DNA; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Humans; Hydrogen Peroxide; I-kappa B Kinase; Immunohistochemistry; In Situ Nick-End Labeling; Inflammation; Jurkat Cells; Models, Chemical; Neovascularization, Pathologic; NF-kappa B; Okadaic Acid; Phosphorylation; Piperidines; Protein Binding; Protein Serine-Threonine Kinases; Pyridines; ras Proteins; Smoking; Time Factors; Tumor Necrosis Factor-alpha; Up-Regulation

2004