okadaic-acid and 8-bromoguanosino-3--5--cyclic-monophosphorothioate

okadaic-acid has been researched along with 8-bromoguanosino-3--5--cyclic-monophosphorothioate* in 2 studies

Other Studies

2 other study(ies) available for okadaic-acid and 8-bromoguanosino-3--5--cyclic-monophosphorothioate

ArticleYear
Modulation of soluble guanylate cyclase activity by phosphorylation.
    Neurochemistry international, 2004, Volume: 45, Issue:6

    The levels of the cGMP in smooth muscle of the gut reflect continued synthesis by soluble guanylate cyclase (GC) and breakdown by phosphodiesterase 5 (PDE5). Soluble GC is a haem-containing, heterodimeric protein consisting alpha- and beta-subunits: each subunit has N-terminal regulatory domain and a C-terminal catalytic domain. The haem moiety acts as an intracellular receptor for nitric oxide (NO) and determines the ability of NO to activate the enzyme and generate cGMP. In the present study the mechanism by which protein kinases regulate soluble GC in gastric smooth muscle was examined. Sodium nitroprusside (SNP) acting as a NO donor stimulated soluble GC activity and increased cGMP levels. SNP induced soluble GC phosphorylation in a concentration-dependent fashion. SNP-induced soluble GC phosphorylation was abolished by the selective cGMP-dependent protein kinase (PKG) inhibitors, Rp-cGMPS and KT-5823. In contrast, SNP-stimulated soluble GC activity and cGMP levels were significantly enhanced by Rp-cGMPS and KT-5823. Phosphorylation and inhibition of soluble GC were PKG specific, as selective activator of cAMP-dependent protein kinase, Sp-5, 6-DCl-cBiMPS had no effect on SNP-induced soluble GC phosphorylation and activity. The ability of PKG to stimulate soluble GC phosphorylation was demonstrated in vitro by back phosphorylation technique. Addition of purified phosphatase 1 inhibited soluble GC phosphorylation in vitro, and inhibition was reversed by a high concentration (10 microM) of okadaic acid. In gastric smooth muscle cells, inhibition of phosphatase activity by okadaic acid increased soluble GC phosphorylation in a concentration-dependent fashion. The increase in soluble GC phosphorylation inhibited SNP-stimulated soluble GC activity and cGMP formation. The results implied the feedback inhibition of soluble GC activity by PKG-dependent phosphorylation impeded further formation of cGMP.

    Topics: Carbazoles; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cyclic GMP; Enzyme Inhibitors; Guanylate Cyclase; Humans; Indoles; Muscle, Smooth; Nitric Oxide Donors; Nitroprusside; Okadaic Acid; Phosphoric Monoester Hydrolases; Phosphorylation; Radioimmunoassay; Receptors, Cytoplasmic and Nuclear; Solubility; Soluble Guanylyl Cyclase; Stomach; Thionucleotides

2004
24R,25-dihydroxyvitamin D3 increases cyclic GMP contents, leading to an enhancement of osteocalcin synthesis by 1,25-dihydroxyvitamin D3 in cultured human osteoblastic cells.
    Experimental cell research, 1998, Oct-10, Volume: 244, Issue:1

    The effect of the physiological vitamin D metabolite 24R, 25-dihydroxyvitamin D3 [24R,25(OH)2D3] on human osteoblastic cells was assessed. Physiological concentrations (10(-9)-10(-8) M) of 24R, 25(OH)2D3 significantly increased the cyclic guanosine 5'-monophosphate (cGMP) content in the human osteoblastic cells by approximately 200% in 5 to 15 min. In contrast, 24S, 25-dihydroxyvitamin D3 had only a weak effect on the cGMP content, and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] did not affect the content. The production of osteocalcin was not induced by 10(-9)-10(-8) M of 24R,25(OH)2D3 in the absence of 1,25(OH)2D3. However, the same concentration of 24R,25(OH)2D3 showed stimulatory effects on osteocalcin synthesis in the presence of 10(-9) M 1, 25(OH)2D3. Rp-8Br-cyclic GMP, a specific inhibitor of cyclic GMP-dependent protein kinase, significantly inhibited the cooperative effect of 24R,25(OH)2D3 with 1,25(OH)2D3 on the osteocalcin synthesis, although Rp-8Br-cyclic AMP, a specific inhibitor of cyclic AMP-dependent protein kinase, did not affect the cooperative effect. In addition, okadaic acid enhanced the osteocalcin synthesis induced by 1,25(OH)2D3. These observations suggest that 24R,25(OH)2D3 has a unique activity of increasing cGMP contents in osteoblastic cells, and that the increase in cGMP contents may lead to the cooperative effect of 24R,25(OH)2D3 with 1, 25(OH)2D3 on osteocalcin synthesis. These data support the hypothesis that 24R,25(OH)2D3 has a physiological role in human bone and mineral metabolism.

    Topics: 24,25-Dihydroxyvitamin D 3; 8-Bromo Cyclic Adenosine Monophosphate; Calcitriol; Cells, Cultured; Cyclic GMP; Drug Synergism; Humans; Okadaic Acid; Osteoblasts; Osteocalcin; Thionucleotides

1998