ofloxacin and pyrilamine

ofloxacin has been researched along with pyrilamine in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (33.33)18.2507
2000's1 (16.67)29.6817
2010's2 (33.33)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Nezu, J; Oku, A; Sai, Y; Sakamoto, K; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H1
Nezu, JI; Ohashi, R; Oku, A; Sai, Y; Shimane, M; Tamai, I; Tsuji, A; Yabuuchi, H1
Carrupt, PA; Crivori, P; Cruciani, G; Testa, B1
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Chang, H; Chen, C; Du, H; Guan, C; Li, C; Qiu, L; Wang, S; Wang, T; Wu, Y; Zhang, L; Zhang, S; Zhou, H1

Other Studies

6 other study(ies) available for ofloxacin and pyrilamine

ArticleYear
Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 289, Issue:2

    Topics: Animals; Biological Transport, Active; Carrier Proteins; Cell Line; Gene Expression; Humans; Hydrogen-Ion Concentration; Membrane Potentials; Membrane Proteins; Membrane Transport Proteins; Oocytes; Organic Cation Transport Proteins; Quinidine; RNA, Messenger; Symporters; Tetraethylammonium Compounds; Xenopus laevis

1999
Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 291, Issue:2

    Topics: Biological Transport, Active; Carnitine; Carrier Proteins; Cations; Cells, Cultured; Dose-Response Relationship, Drug; Embryo, Mammalian; Humans; Hydrogen-Ion Concentration; Kidney; Membrane Proteins; Organic Cation Transport Proteins; Sodium; Solute Carrier Family 22 Member 5; Stereoisomerism

1999
Predicting blood-brain barrier permeation from three-dimensional molecular structure.
    Journal of medicinal chemistry, 2000, Jun-01, Volume: 43, Issue:11

    Topics: Blood-Brain Barrier; Databases, Factual; Models, Chemical; Molecular Conformation; Multivariate Analysis; Permeability; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
    Chemical research in toxicology, 2012, Oct-15, Volume: 25, Issue:10

    Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding

2012
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Effects of membrane transport activity and cell metabolism on the unbound drug concentrations in the skeletal muscle and liver of drugs: A microdialysis study in rats.
    Pharmacology research & perspectives, 2021, Volume: 9, Issue:5

    Topics: Animals; Antipyrine; Atenolol; Carbamazepine; Cell Membrane; Digoxin; Diltiazem; Diphenhydramine; Drug Elimination Routes; Gabapentin; Lamotrigine; Liver; Memantine; Membrane Transport Proteins; Microdialysis; Muscle, Skeletal; Ofloxacin; Pharmaceutical Preparations; Propranolol; Pyrilamine; Quinidine; Rats; Terfenadine

2021