ofloxacin has been researched along with promazine in 34 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 7 (20.59) | 29.6817 |
2010's | 25 (73.53) | 24.3611 |
2020's | 2 (5.88) | 2.80 |
Authors | Studies |
---|---|
Carrupt, PA; Crivori, P; Cruciani, G; Testa, B | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM | 1 |
Andrisano, V; Barril, X; Bartolini, M; Carreiras, Mdo C; de los Ríos, C; García, AG; Huertas, O; León, R; López, B; López, MG; Luque, FJ; Marco-Contelles, J; Rodríguez-Franco, MI; Samadi, A; Villarroya, M | 1 |
Andrisano, V; Arce, MP; Badia, A; Bartolini, M; Camps, P; Clos, MV; Dafni, T; Formosa, X; Galdeano, C; Gómez, E; Huertas, O; Isambert, N; Lavilla, R; Luque, FJ; Mancini, F; Muñoz-Torrero, D; Ramírez, L; Rodríguez-Franco, MI | 1 |
Arce, MP; Conde, S; García, AG; González-Muñoz, GC; López, B; López, MG; Pérez, C; Rodríguez-Franco, MI; Villarroya, M | 1 |
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM | 1 |
Glen, RC; Lowe, R; Mitchell, JB | 1 |
Arce, MP; Conde, S; del Barrio, L; Egea, J; García, AG; González-Muñoz, GC; León, R; López, B; López, MG; Martín-de-Saavedra, MD; Pérez, C; Rodríguez-Franco, MI; Romero, A; Villarroya, M | 1 |
Brea, J; Cadavid, MI; Campillo, NE; Ceballos, P; Gil, C; Loza, MI; Martínez, A; Moro, MA; Pérez, C; Pérez, DI; Perez-Castillo, A; Redondo, M; Val, C; Zarruk, JG | 1 |
Andrisano, V; Bolognesi, ML; Carloni, P; Cavalli, A; Chiriano, G; De Simone, A; Legname, G; Mancini, F; Martinez, A; Perez, DI; Roberti, M | 1 |
Alonso-Gil, S; Campillo, NE; Castro, A; Encinas, A; Gil, C; Martinez, A; Morales-Garcia, JA; Palomo, V; Perez, C; Perez, DI; Perez-Castillo, A; Soteras, I | 1 |
Alonso-Gil, S; Chavarría, C; Gil, C; Morales Garcia, JA; Pérez, C; Perez, DI; Pérez-Castillo, A; Porcal, W; Souza, JM | 1 |
Chen, J; Chen, X; Huang, L; Li, X; Sun, Y | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Andrisano, V; Bartolini, M; Clos, MV; Di Pietro, O; Juárez-Jiménez, J; Lavilla, R; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Ramón, R; Viayna, E; Vicente-García, E | 1 |
Bello, ML; Gil, C; Kraemer, BC; Lecourtois, M; Liachko, NF; Martinez, A; Miguel, L; Perez, C; Perez, DI; Redondo, M; Salado, IG | 1 |
Clos, MV; Di Pietro, O; Espargaró, A; Juárez-Jiménez, J; Lavilla, R; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Sabaté, R | 1 |
Clos, MV; Di Pietro, O; Espargaró, A; Galdeano, C; Guillou, C; Lamuela-Raventós, RM; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Ragusa, IM; Sabaté, R; Vallverdú-Queralt, A; Viayna, E | 1 |
Huang, L; Li, X; Meng, F; Miao, H; Sun, Y | 1 |
Artigas, A; Clos, MV; Gbedema, SY; Kelly, JM; Muñoz-Torrero, D; Pérez, B; Sola, I; Taylor, MC; Wright, CW | 1 |
Jiang, N; Kong, LY; Lan, JS; Li, ZR; Wang, KD; Wang, X; Xie, SS; Yu, W | 1 |
Berenguer, D; Clos, MV; Di Pietro, O; Fisa, R; Kelly, JM; Lanzoni, A; Lavilla, R; Muñoz-Torrero, D; Pérez, B; Riera, C; Sayago, H; Sola, I; Taylor, MC; Viayna, E; Vicente-García, E | 1 |
Alencar, N; Di Pietro, O; Esteban, G; Juárez-Jiménez, J; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Sola, I; Solé, M; Szałaj, N; Unzeta, M; Vázquez, J; Viayna, E | 1 |
Artigas, A; Clos, MV; Kelly, JM; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Sola, I; Taylor, MC; Viayna, E; Wright, CW | 1 |
Guo, QL; Huang, SL; Huang, ZS; Li, D; Liu, ZQ; Ou, TM; Tan, JH; Wang, HG; Wang, N; Wu, JQ; Xia, CL | 1 |
Arce, MP; Conde, S; Egea, J; Gil, C; León, R; López, MG; Monjas, L; Pérez, C; Rodríguez-Franco, MI; Villarroya, M | 1 |
Campillo, NE; Geiger, L; Gil, C; González, S; Li, L; Martinez, A; Morales, AV; Perez, DI; Salado, IG; Sebastián-Pérez, V; Zaldivar-Diez, J | 1 |
Campillo, NE; Cañada, FJ; Canales, A; Carvalho, I; Chierrito, TPC; Martinez, A; Martínez-Gonzalez, L; Pedersoli-Mantoani, S; Perez, C; Pérez, DI; Roca, C; Sebastian-Pérez, V | 1 |
Alcaro, S; Bagetta, D; Borges, F; Cagide, F; Oliveira, PJ; Ortuso, F; Pérez, C; Reis, J; Rodríguez-Franco, MI; Teixeira, J; Uriarte, E; Valencia, ME | 1 |
An, B; Hu, J; Huang, L; Li, X; Li, Z; Pan, T | 1 |
Andrisano, V; Barniol-Xicota, M; Bartolini, M; De Simone, A; Espargaró, A; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Pivetta, D; Pont, C; Sabate, R; Sureda, FX; Turcu, AL; Vázquez, S | 1 |
Chaikuad, A; de Lago, E; Gil, C; Gomez-Almeria, M; Gonzalo-Consuegra, C; Knapp, S; Lietha, D; Martín-Requero, A; Martinez, A; Martínez-González, L; Monti, B; Nozal, V; Palomo, V; Pérez-Cuevas, E; Petralla, S; Ramírez, D; Santana, P | 1 |
Brea, JM; Companys-Alemany, J; Griñán-Ferré, C; Johnson, JW; Kurnikova, MG; Loza, MI; Pallàs, M; Patel, DS; Pérez, B; Phillips, MB; Soto, D; Sureda, FX; Turcu, AL; Vázquez, S | 1 |
34 other study(ies) available for ofloxacin and promazine
Article | Year |
---|---|
Predicting blood-brain barrier permeation from three-dimensional molecular structure.
Topics: Blood-Brain Barrier; Databases, Factual; Models, Chemical; Molecular Conformation; Multivariate Analysis; Permeability; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship | 2008 |
Tacripyrines, the first tacrine-dihydropyridine hybrids, as multitarget-directed ligands for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Blood-Brain Barrier; Butyrylcholinesterase; Calcium; Calcium Channel Blockers; Catalytic Domain; Cell Death; Cell Line, Tumor; Cholinesterase Inhibitors; Cytosol; Dihydropyridines; Humans; Hydrogen Peroxide; Kinetics; Ligands; Models, Molecular; Peptide Fragments; Permeability; Tacrine | 2009 |
Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and beta-amyloid-directed anti-Alzheimer compounds.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Amyloid Precursor Protein Secretases; Animals; Binding Sites; Blood-Brain Barrier; Butyrylcholinesterase; Cattle; Cholinesterase Inhibitors; Drug Design; Humans; Isomerism; Membranes, Artificial; Mice; Models, Molecular; Molecular Conformation; Permeability; Protein Binding; Tacrine | 2009 |
Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Blood-Brain Barrier; Catalytic Domain; Cattle; Cell Death; Cell Line, Tumor; Cell Survival; Cholinergic Agents; Cholinesterase Inhibitors; Esters; Glutamic Acid; Humans; Hydrophobic and Hydrophilic Interactions; Neuroprotective Agents; Permeability; Piperidines; Protein Binding | 2009 |
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
Topics: | 2008 |
Predicting phospholipidosis using machine learning.
Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine | 2010 |
N-acylaminophenothiazines: neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Antineoplastic Agents; Butyrylcholinesterase; Calcium; Cell Death; Cell Survival; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Okadaic Acid; Peptide Fragments; Phenothiazines; Stereoisomerism; Structure-Activity Relationship; Tumor Cells, Cultured | 2011 |
Neuroprotective efficacy of quinazoline type phosphodiesterase 7 inhibitors in cellular cultures and experimental stroke model.
Topics: Animals; Blood-Brain Barrier; Cells, Cultured; Cyclic Nucleotide Phosphodiesterases, Type 7; Disease Models, Animal; Enzyme Inhibitors; Infarction, Middle Cerebral Artery; Male; Mice; Neuroprotective Agents; Permeability; Quinazolines; Stroke | 2012 |
A small chemical library of 2-aminoimidazole derivatives as BACE-1 inhibitors: Structure-based design, synthesis, and biological evaluation.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid Precursor Protein Secretases; Animals; Cell Survival; Chickens; Humans; Imidazoles; Inhibitory Concentration 50; Magnetic Resonance Spectroscopy; Models, Molecular; Neurons; Small Molecule Libraries; Spectrometry, Mass, Electrospray Ionization; Spectroscopy, Fourier Transform Infrared; Structure-Activity Relationship | 2012 |
5-imino-1,2,4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Astrocytes; Blood-Brain Barrier; Cell Death; Cell Differentiation; Cell Membrane Permeability; Cells, Cultured; Glycogen Synthase Kinase 3; Hippocampus; Humans; Imines; In Vitro Techniques; Lipopolysaccharides; Membranes, Artificial; Microglia; Models, Molecular; Neural Stem Cells; Neurogenesis; Neurons; Neuroprotective Agents; Nitrites; Protein Binding; Rats; Structure-Activity Relationship; Substrate Specificity; Swine; Thiadiazoles | 2012 |
Microwave-assisted synthesis of hydroxyphenyl nitrones with protective action against oxidative stress.
Topics: Anti-Inflammatory Agents; Antioxidants; Blood-Brain Barrier; Cell Survival; Dose-Response Relationship, Drug; Humans; Microwaves; Molecular Structure; Neuroblastoma; Neuroprotective Agents; Nitrogen Oxides; Oxidative Stress; Oxidopamine; Peroxynitrous Acid; Structure-Activity Relationship; Tyrosine | 2012 |
Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine-Homoisoflavonoid hybrids.
Topics: Alzheimer Disease; Animals; Blood-Brain Barrier; Cholinesterase Inhibitors; Cholinesterases; Electrophorus; Humans; Isoflavones; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Swine; Tacrine | 2013 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.
Topics: Acetylcholinesterase; Animals; Binding Sites; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Electrophorus; Humans; Membranes, Artificial; Models, Biological; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Structure; Naphthyridines; Permeability; Protein Binding | 2014 |
Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis.
Topics: Amyotrophic Lateral Sclerosis; Animals; Animals, Genetically Modified; Benzothiazoles; Blood-Brain Barrier; Casein Kinase I; Cell Membrane Permeability; Cells, Cultured; DNA-Binding Proteins; Drosophila; Drug Design; Drug Discovery; HEK293 Cells; Heterocyclic Compounds; High-Throughput Screening Assays; Humans; Magnetic Resonance Spectroscopy; Models, Molecular; Molecular Conformation; Neurons; Neurotoxicity Syndromes; Phosphorylation; Protein Kinase Inhibitors; Substrate Specificity | 2014 |
Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Cholinesterase Inhibitors; Cholinesterases; Dose-Response Relationship, Drug; Humans; Models, Molecular; Molecular Structure; Naphthyridines; Structure-Activity Relationship; Tacrine; tau Proteins; Tauopathies | 2014 |
Shogaol-huprine hybrids: dual antioxidant and anticholinesterase agents with β-amyloid and tau anti-aggregating properties.
Topics: Acetylcholinesterase; Aminoquinolines; Amyloid beta-Peptides; Antioxidants; Catechols; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Heterocyclic Compounds, 4 or More Rings; Humans; Molecular Structure; Protein Aggregates; Protein Aggregation, Pathological; Structure-Activity Relationship; tau Proteins | 2014 |
Discovery of indanone derivatives as multi-target-directed ligands against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Humans; Indans; Inhibitory Concentration 50; Ligands; Peptide Fragments; Permeability; Protein Aggregates | 2014 |
Synthesis and antiprotozoal activity of oligomethylene- and p-phenylene-bis(methylene)-linked bis(+)-huprines.
Topics: Antimalarials; Antiprotozoal Agents; Humans; Molecular Structure; Structure-Activity Relationship | 2014 |
Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Benzopyrans; Blood-Brain Barrier; Brain; Cell Survival; Cells, Cultured; Cholinesterase Inhibitors; Coumarins; Drug Design; Erythrocytes; Humans; Kinetics; Models, Molecular; Molecular Docking Simulation; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Neuroblastoma; Piperazines; Tacrine | 2015 |
Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity.
Topics: Acetylcholinesterase; Animals; Antiprotozoal Agents; Cell Line; Cell Survival; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Electrophorus; Leishmania infantum; Molecular Structure; Parasitic Sensitivity Tests; Quinolines; Rats; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma cruzi | 2015 |
Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors.
Topics: Dose-Response Relationship, Drug; Drug Design; Humans; Molecular Docking Simulation; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Pargyline; Structure-Activity Relationship | 2016 |
Synthesis and biological evaluation of N-cyanoalkyl-, N-aminoalkyl-, and N-guanidinoalkyl-substituted 4-aminoquinoline derivatives as potent, selective, brain permeable antitrypanosomal agents.
Topics: Aminoquinolines; Brain; Dose-Response Relationship, Drug; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei | 2016 |
Design, synthesis and evaluation of 2-arylethenyl-N-methylquinolinium derivatives as effective multifunctional agents for Alzheimer's disease treatment.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Blood-Brain Barrier; Cell Death; Cell Line; Cholinesterase Inhibitors; Drug Design; Glutathione; Humans; Quinolines; Reactive Oxygen Species | 2017 |
Enzymatic and solid-phase synthesis of new donepezil-based L- and d-glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer's disease and cerebral ischemia.
Topics: Alzheimer Disease; Animals; Brain Ischemia; Calcium Channel Blockers; Cholinesterase Inhibitors; Donepezil; Glutamates; Hippocampus; Humans; Indans; Neuroprotective Agents; Piperidines; Rats; Solid-Phase Synthesis Techniques | 2017 |
Leucine rich repeat kinase 2 (LRRK2) inhibitors based on indolinone scaffold: Potential pro-neurogenic agents.
Topics: Animals; Cell Differentiation; Cell Proliferation; Dose-Response Relationship, Drug; Humans; Indoles; Leucine-Rich Repeat Serine-Threonine Protein Kinase-2; Mice; Mice, Inbred C57BL; Models, Molecular; Molecular Structure; Neural Stem Cells; Neuroprotective Agents; Protein Kinase Inhibitors; Structure-Activity Relationship | 2017 |
Chameleon-like behavior of indolylpiperidines in complex with cholinesterases targets: Potent butyrylcholinesterase inhibitors.
Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Indoles; Molecular Structure; Piperidines; Structure-Activity Relationship | 2018 |
Multi-target-directed ligands for Alzheimer's disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors.
Topics: Alzheimer Disease; Blood-Brain Barrier; Cholinesterase Inhibitors; Cholinesterases; Chromones; Drug Design; Hep G2 Cells; Humans; Ligands; Molecular Docking Simulation; Molecular Targeted Therapy; Monoamine Oxidase; Monoamine Oxidase Inhibitors | 2018 |
Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer's disease.
Topics: Alzheimer Disease; Aminopyridines; Animals; Benzamides; Clioquinol; Cyclic Nucleotide Phosphodiesterases, Type 4; Cyclopropanes; Drug Design; Humans; Ligands; Mice; Rats; Rolipram | 2019 |
A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors.
Topics: Acetylcholinesterase; Adamantane; Alzheimer Disease; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Neuroprotective Agents; Receptors, N-Methyl-D-Aspartate; Structure-Activity Relationship; Tacrine | 2019 |
TDP-43 Modulation by Tau-Tubulin Kinase 1 Inhibitors: A New Avenue for Future Amyotrophic Lateral Sclerosis Therapy.
Topics: Amyotrophic Lateral Sclerosis; Animals; Brain; Case-Control Studies; DNA-Binding Proteins; Humans; Inflammation; Macrophages; Male; Mice; Mice, Inbred BALB C; Mice, Transgenic; Phosphorylation; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Rats; Rats, Wistar; Spinal Cord; Tissue Distribution | 2022 |
Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease.
Topics: Alzheimer Disease; Animals; Caenorhabditis elegans; Disease Models, Animal; Memantine; Mice; Receptors, N-Methyl-D-Aspartate | 2022 |