octadecadienoic-acid has been researched along with stearic-acid* in 3 studies
3 other study(ies) available for octadecadienoic-acid and stearic-acid
Article | Year |
---|---|
Gas Chromatography-Mass Spectrometry Analysis of Constituent Oil from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), from Nigeria.
Gas chromatography-mass spectrometry analysis of constituent oil from dried Ganoderma lucidum was carried out. Fresh G. lucidum obtained from its natural environment was thoroughly washed with distilled water and air-dried for 2 weeks and the component oils were extracted and analyzed. Four predominant components identified were pentadecanoic acid, 14-methyl-ester (retention time [RT] = 19.752 minutes; percentage total = 25.489), 9,12-octadecadienoic acid (Z,Z)- (RT = 21.629 minutes and 21.663 minutes; percentage total = 25.054), n-hexadecanoic acid (RT = 20.153 minutes; percentage total = 24.275), and 9-octadecenoic acid (Z)-, methyl ester (RT = 21.297 minutes; percentage total = 13.027). The two minor oils identified were 9,12-octadecadienoic acid, methyl ester, (E,E)- and octadecanoic acid, methyl ester (RT = 21.246 minutes and 21.503 minutes; percentage total = 7.057 and 5.097, respectively). Topics: Fatty Acids, Unsaturated; Gas Chromatography-Mass Spectrometry; Nigeria; Oils, Volatile; Reishi; Stearic Acids | 2016 |
Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro.
Dietary unsaturated fatty acids are extensively hydrogenated in the rumen, resulting in the formation of numerous intermediates that may exert physiological effects and alter the fat composition of ruminant-derived foods. A batch culture method was used to characterize the hydrogenation of linoleic acid (LeA) by strained rumen fluid in vitro. Incubations (n = 5) were performed in 100-mL flasks maintained at 39 °C containing 400mg of grass hay, 50 mL of buffered rumen fluid, and incremental amounts of LeA (0, 1.0, 2.5, 5.0, or 10.0mg) for 0, 1.5, 3.0, 4.5, 6.0, and 9.0 h. The fatty acid composition of flask contents was determined using complimentary silver-ion thin-layer chromatography, gas chromatography mass-spectrometry, and silver-ion high-performance liquid chromatography. Linoleic acid was extensively (98.1, 97.6, 98.0, and 89.8% for additions of 1.0, 2.5, 5.0, and 10.0mg of LeA, respectively) hydrogenated over time. Complete reduction of LeA to 18:0 was inhibited in direct relation to the amount of added substrate, the extent of which was greatest for the highest amount of LeA addition. Recoveries of 1.0, 2.5, 5.0, and 10.0mg of added LeA as 18:0 averaged 73.6, 65.0, 57.3, and 10.7%, respectively. Incubation of incremental amounts of LeA resulted in a time-dependent accumulation of geometric isomers of 9,11 and 10,12 conjugated linoleic acid, several nonconjugated 18:2 isomers, and a wide range of cis 18:1 and trans 18:1 intermediates. Several unusual intermediates including cis-6,cis-12 18:2; cis-7,cis-12 18:2; and cis-8,cis-12 18:2, were found to accumulate in direct relation to the amount of added LeA, providing the first indications that hydrogenation of LeA by ruminal bacteria may also involve mechanisms other than hydrogen abstraction or isomerization of the cis-12 double bond. Fitting of single-pool, first-order kinetic models to experimental data indicated that the rate of LeA disappearance decreased with increases in substrate availability. Reduction of 18:1 and 18:2 intermediates occurred at much lower rates compared with conjugated linoleic acid and nonconjugated 18:2 isomer formation. In conclusion, the extent of LeA biohydrogenation in vitro was shown to be time- and dose-dependent with evidence that LeA is hydrogenated by ruminal bacteria via several distinct metabolic pathways. The accumulation of several unusual 18:2 isomers indicates that biohydrogenation of LeA also proceeds via mechanisms other than isomerization of the cis-12 do Topics: Animals; Body Fluids; Cattle; Fatty Acids; Fatty Acids, Unsaturated; Hydrogen-Ion Concentration; Hydrogenation; In Vitro Techniques; Linoleic Acid; Linoleic Acids, Conjugated; Rumen; Stearic Acids | 2012 |
Metabolism in humans of cis-12,trans-15-octadecadienoic acid relative to palmitic, stearic, oleic and linoleic acids.
Mixtures of triglycerides containing deuterium-labeled hexadecanoic acid (16:0), octadecanoic acid (18:0), cis-9-octadecenoic acid (9c-18:1), cis-9,cis-12-octadecadienoic acid (9c, 12c-18:2) and cis-12,trans-15-octadecadienoic acid (12c,15t-18:2) were fed to two young-adult males. Plasma lipid classes were isolated from samples collected periodically over 48 hr. Incorporation and turnover of the deuterium-labeled fats in plasma lipids were followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methyl ester derivatives. Absorption of the deuterated fats was followed by GC-MS analysis of chylomicron triglycerides isolated by ultracentrifugation. Results were the following: (i) endogenous fat contributed about 40% of the total fat incorporated into chylomicron triglycerides; (ii) elongation, desaturation and chain-shortened products from the deuterated fats were not detected; (iii) the polyunsaturated isomer 12c,15t-18:2 was metabolically more similar to saturated and 9c-18:1 fatty acids than to 9c,12c-18:2; (iv) relative incorporation of 9c,12c-18:2 into phospholipids did not increase proportionally with an increase of 9c,12c-18:2 in the mixture of deuterated fats fed; (v) absorption of 16:0, 18:0, 9c-18:1, 9c,12c-18:2 and 12c,15t-18:2 were similar; and (vi) data for the 1- and 2-acyl positions of phosphatidylcholine and for cholesteryl ester fractions reflected the known high specificity of phosphatidylcholine acyltransferase and lecithin:cholesteryl acyltransferase for 9c,12c-18:2. These results illustrate that incorporation of dietary fatty acids into human plasma lipid classes is selectively controlled and that incorporation of dietary 9c,12c-18:2 is limited. These results suggest that nutritional benefits of diets high in 9c,12c-18:2 may be of little value to normal subjects and that the 12c,15t-18:2 isomer in hydrogenated fat is not a nutritional liability at the present dietary level. Topics: Adult; Cholesterol Esters; Chylomicrons; Deuterium; Dietary Fats; Fatty Acids, Unsaturated; Gas Chromatography-Mass Spectrometry; Humans; Linoleic Acid; Linoleic Acids; Male; Oleic Acid; Oleic Acids; Palmitic Acid; Palmitic Acids; Phospholipids; Radioisotope Dilution Technique; Stearic Acids; Triglycerides | 1987 |