o-(2-fluoroethyl)tyrosine and 3-iodo-alpha-methyltyrosine

o-(2-fluoroethyl)tyrosine has been researched along with 3-iodo-alpha-methyltyrosine* in 1 studies

Trials

1 trial(s) available for o-(2-fluoroethyl)tyrosine and 3-iodo-alpha-methyltyrosine

ArticleYear
Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alpha-methyl-L-tyrosine SPECT in brain tumors.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2004, Volume: 45, Issue:3

    The aim of this study was to compare PET with O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) and SPECT with 3-(123)I-iodo-alpha-methyl- L-tyrosine ((123)I-IMT) in patients with brain tumors.. Twenty patients with a suspected brain tumor were investigated by (18)F-FET PET, (123)I-IMT SPECT, and MRI within 3 wk. Region-of-interest analyses were performed on coregistered PET/SPECT/MRI images and the tumor-to-brain ratio (TBR), muscle-to-brain ratio (MBR), cerebellum-to-brain ratio (CerBR), and sinus-to-brain ratio (SBR) were calculated. In addition, the presence of tumor and the discrimination of anatomic structures on (18)F-FET PET and (123)I-IMT SPECT images were visually determined by 3 observers who were unaware of clinical data.. The TBR of (18)F-FET and (123)I-IMT uptake in cerebral tumors showed a highly significant correlation (r = 0.96; P < 0.001). In the visual analysis for the presence or absence of tumors, no differences for (123)I-IMT SPECT and (18)F-FET PET were found in 19 of 20 patients; in one patient a low-grade glioma was only identified on (18)F-FET PET images but not on (123)I-IMT SPECT images. The contrast between tumor and normal brain was significantly higher in (18)F-FET PET (TBR, 2.0 +/- 0.9) than in (123)I-IMT SPECT (TBR, 1.5 +/- 0.5). The discrimination of anatomic structures yielded a significantly better score on (18)F-FET PET images (rating score, 2.6 +/- 0.9) compared with (123)I-IMT SPECT images (rating score, 1.7 +/- 0.9). The uptake of (18)F-FET in the muscles was significantly higher compared with (123)I-IMT (MBR (18)F-FET, 1.4 +/- 0.3; MBR (123)I-IMT, 0.6 +/- 0.2; P < 0.001) and (18)F-FET demonstrated a significantly higher blood-pool radioactivity than (123)I-IMT (SBR (18)F-FET, 1.3 +/- 0.2; SBR (123)I-IMT, 0.8 +/- 0.2; P < 0.001).. The significant correlation of the TBRs of (18)F-FET and (123)I-IMT indicates that clinical experiences of brain tumor diagnostics with (123)I-IMT SPECT might be valid for (18)F-FET PET although substantial differences of the physiologic behavior were identified in extracerebral tissue. As (18)F-FET PET allows improved discrimination of anatomic structures and the tumor-to-brain contrast was significantly superior compared with (123)I-IMT SPECT scans, the results are encouraging for further evaluation of (18)F-FET for imaging brain tumors.

    Topics: Adult; Aged; Brain Neoplasms; Female; Fluorine Radioisotopes; Humans; Magnetic Resonance Imaging; Male; Methyltyrosines; Middle Aged; Radiopharmaceuticals; Reproducibility of Results; Sensitivity and Specificity; Subtraction Technique; Tomography, Emission-Computed; Tomography, Emission-Computed, Single-Photon; Tyrosine

2004