ns 1619 has been researched along with tram 34 in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Alper, SL; Clements, RT; Feng, J; Khabbaz, KR; Liu, Y; Sellke, EW; Sellke, FW; Senthilnathan, V; Sodha, NR | 1 |
Endemann, DH; Resch, M; Riegger, GA; Schach, C; Schmid, PM | 1 |
2 other study(ies) available for ns 1619 and tram 34
Article | Year |
---|---|
Calcium-activated potassium channels contribute to human skeletal muscle microvascular endothelial dysfunction related to cardiopulmonary bypass.
Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Aged; Apamin; Benzimidazoles; Cardiopulmonary Bypass; Dose-Response Relationship, Drug; Endothelium, Vascular; Female; Humans; In Vitro Techniques; Indoles; Intermediate-Conductance Calcium-Activated Potassium Channels; Large-Conductance Calcium-Activated Potassium Channels; Male; Muscle, Skeletal; Oximes; Peptides; Potassium Channels; Potassium Channels, Calcium-Activated; Pyrazoles; Small-Conductance Calcium-Activated Potassium Channels; Vasoconstrictor Agents; Vasodilation | 2008 |
Type 2 diabetes: increased expression and contribution of IKCa channels to vasodilation in small mesenteric arteries of ZDF rats.
Topics: Acetylcholine; Animals; Apamin; Benzimidazoles; Calcium Channel Agonists; Charybdotoxin; Cyclooxygenase Inhibitors; Diabetes Mellitus, Type 2; Endothelium, Vascular; Heterozygote; Homozygote; Intermediate-Conductance Calcium-Activated Potassium Channels; Large-Conductance Calcium-Activated Potassium Channels; Male; Membrane Potentials; Mesenteric Arteries; Nitric Oxide Synthase Type III; Potassium Channel Blockers; Pyrazoles; Rats; Rats, Zucker; RNA, Messenger; Small-Conductance Calcium-Activated Potassium Channels; Vasodilation | 2014 |