novobiocin and amifloxacin

novobiocin has been researched along with amifloxacin* in 2 studies

Other Studies

2 other study(ies) available for novobiocin and amifloxacin

ArticleYear
Enhancement of Burkholderia cepacia antimicrobial susceptibility by cationic compounds.
    The Journal of antimicrobial chemotherapy, 1997, Volume: 40, Issue:3

    Infections in cystic fibrosis (CF) due to Burkholderia cepacia are challenging due to their resistance to antibiotics. We explored a new strategy for increasing the permeability of B. cepacia using cationic agents, including amino compounds, to reduce the MICs of standard antibiotics. Twenty-eight B. cepacia isolates from four CF centres in North America and four non-CF B. cepacia were examined by standard microtitre broth dilution methods for susceptibility to a variety of antibiotics in the presence of non-inhibitory concentrations of diaminoacetone (DAA), methylglyoxal bis-guanylhydrazone (MGBH), chlorpromazine (CPZ) and prochlorperazine (PCPZ). The proportion of isolates with greater than four-fold reductions in MIC in the presence of 0.3 mM CPZ or 0.4 mM PCPZ were 90% and 94% for gentamicin, 80% and 83% for tobramycin, 45% and 17% for ceftazidime, and 35% and 17% for amifloxacin. CPZ showed the same degree of reduction in the MIC of azithromycin in 79% strains (MIC50 reduced to 16 from > or = 256 mg/L). Non-CF B. cepacia showed a greater than four-fold reduction in MIC with CPZ for gentamicin, tobramycin and azithromycin and two-fold reduction for ceftazidime. Little or no reduction in MIC was seen with DAA or MGBH for any antibiotic. Addition of magnesium ions to the medium competitively inhibited any MIC reduction effect seen with the cationic agents. CPZ and PCPZ appeared to enhance the permeability of B. cepacia to antibiotics based upon ionic charge characteristics of the antibiotic. No significant differences were seen in outer membrane protein and lipopolysaccharide profiles between the culture treated with CPZ and the respective control culture of strain B. cepacia ATCC 13945. The fluorescent probe 1N-phenylnaphthylamine had no increased access across the outer membrane in the presence of CPZ for B. cepacia ATCC 13945. However, thin-section electron microscopy revealed separation between the outer membrane and the rest of the cytoplasm accompanied by a widening of the periplasmic space. These data provide a rationale for investigating amino compounds as potential permeability-increasing agents against B. cepacia.

    Topics: 1-Naphthylamine; Anti-Infective Agents; Azithromycin; Bacterial Outer Membrane Proteins; Burkholderia cepacia; Cations; Ceftazidime; Cell Membrane Permeability; Ciprofloxacin; Clarithromycin; Fleroxacin; Fluorescent Dyes; Fluoroquinolones; Gentamicins; Magnesium; Microbial Sensitivity Tests; Microscopy, Electron; Novobiocin; Oxolinic Acid; Polysaccharides, Bacterial; Tobramycin

1997
Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro.
    Antimicrobial agents and chemotherapy, 1988, Volume: 32, Issue:8

    The fluoroquinolone antibiotics are structurally related to nalidixic acid. Their primary antibacterial action appears to be mainly due to inhibition of DNA gyrase (DNA topoisomerase II). We determined the activity of several fluoroquinolones in vitro against two strains of Plasmodium falciparum, FCC1 (chloroquine susceptible) and VNS (chloroquine resistant). [3H]hypoxanthine incorporation by malarial parasites was determined at 48 and 96 h. The molarity at which each agent caused a 50% decrease in the incorporation of [3H]hypoxanthine compared with that of drug-free controls was defined as the 50% inhibitory concentration. The fluoroquinolones evaluated were amifloxacin, ciprofloxacin, enoxacin, norfloxacin, ofloxacin, and pefloxacin. Other DNA gyrase inhibitors tested were nalidixic acid, oxolinic acid, novobiocin, and coumermycin A1. Among the fluoroquinolones, ciprofloxacin had the lowest 50% inhibitory concentrations at 48 h against both chloroquine-susceptible and -resistant strains of P. falciparum, (0.26 +/- 0.08) x 10(-4) and (0.38 +/- 0.15) x 10(-4) M, respectively (mean +/- standard deviation). Enoxacin had the lowest 50% inhibitory concentrations against FCC1 and VNS at 96 h, 0.23 x 10(-5) and (0.06 +/- 0.04) x 10(-5) M, respectively. With the VNS strain, fractional inhibitory concentration indexes for the combination of ciprofloxacin and tetracycline were calculated at 48 and 96 h to be 0.93 and 0.79, respectively, indicating modest additive effects. The combination of novobiocin with ciprofloxacin showed indifference in the same system. The antimalarial effects of some fluoroquinolones occur at achievable serum concentrations. Whether inhibition of DNA gyrase contributes to the antimalarial activity of the fluoroquinolones is unknown at present.

    Topics: Aminocoumarins; Animals; Anti-Infective Agents; Chloroquine; Ciprofloxacin; Coumarins; Drug Interactions; Drug Resistance; Enoxacin; Fluoroquinolones; Nalidixic Acid; Norfloxacin; Novobiocin; Ofloxacin; Oxolinic Acid; Pefloxacin; Plasmodium falciparum; Tetracycline; Topoisomerase II Inhibitors

1988