noribogaine has been researched along with 18-methoxycoronaridine* in 7 studies
7 other study(ies) available for noribogaine and 18-methoxycoronaridine
Article | Year |
---|---|
Coronaridine congeners potentiate GABA
To determine whether (+)-catharanthine induces sedative- or anxiolytic/anxiogenic-like activity in male mice, proper animal paradigms were used. The results showed that (+)-catharanthine induces sedative-like activity in the 63-72 mg/Kg dose range in a flumazenil-insensitive manner, but neither this effect nor anxiolytic/anxiogenic-like activity was observed at lower doses. To determine the underlying molecular mechanism of the sedative-like activity, electrophysiological and radioligand binding experiments were performed with (+)-catharanthine and (±)-18-methoxycoronaridine [(±)-18-MC] on GABA Topics: Animals; Benzodiazepines; Dose-Response Relationship, Drug; GABA-A Receptor Agonists; HEK293 Cells; Humans; Hypnotics and Sedatives; Ibogaine; Locomotion; Male; Maze Learning; Mice; Receptors, GABA-A | 2020 |
hERG Blockade by Iboga Alkaloids.
The iboga alkaloids are a class of naturally occurring and synthetic compounds, some of which modify drug self-administration and withdrawal in humans and preclinical models. Ibogaine, the prototypic iboga alkaloid that is utilized clinically to treat addictions, has been associated with QT prolongation, torsades de pointes and fatalities. hERG blockade as IKr was measured using the whole-cell patch clamp technique in HEK 293 cells. This yielded the following IC50 values: ibogaine manufactured by semisynthesis via voacangine (4.09 ± 0.69 µM) or by extraction from T. iboga (3.53 ± 0.16 µM); ibogaine's principal metabolite noribogaine (2.86 ± 0.68 µM); and voacangine (2.25 ± 0.34 µM). In contrast, the IC50 of 18-methoxycoronaridine, a product of rational synthesis and current focus of drug development was >50 µM. hERG blockade was voltage dependent for all of the compounds, consistent with low-affinity blockade. hERG channel binding affinities (K i) for the entire set of compounds, including 18-MC, ranged from 0.71 to 3.89 µM, suggesting that 18-MC binds to the hERG channel with affinity similar to the other compounds, but the interaction produces substantially less hERG blockade. In view of the extended half-life of noribogaine, these results may relate to observations of persistent QT prolongation and cardiac arrhythmia at delayed intervals of days following ibogaine ingestion. The apparent structure-activity relationships regarding positions of substitutions on the ibogamine skeleton suggest that the iboga alkaloids might provide an informative paradigm for investigation of the structural biology of the hERG channel. Topics: Alkaloids; Dose-Response Relationship, Drug; Ether-A-Go-Go Potassium Channels; HEK293 Cells; Humans; Ibogaine; Patch-Clamp Techniques; Plant Extracts; Potassium Channel Blockers; Structure-Activity Relationship; Tabernaemontana | 2016 |
Effect of Iboga alkaloids on µ-opioid receptor-coupled G protein activation.
The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR)-related G proteins by iboga alkaloids.. Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC), a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio)-triphosphate ([(35)S]GTPγS) binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices.. In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine) to 13 uM (noribogaine and 18MC). Noribogaine and 18-MC did not stimulate [(35)S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [(35)S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [(35)S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a novel mechanism of action, and further justify the search for alternative targets of iboga alkaloids. Topics: Animals; Autoradiography; Bridged-Ring Compounds; CHO Cells; Cricetulus; Dose-Response Relationship, Drug; Female; Gene Expression; Guanosine 5'-O-(3-Thiotriphosphate); HEK293 Cells; Humans; Ibogaine; Organ Specificity; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Substance Withdrawal Syndrome; Thalamus | 2013 |
Noribogaine, but not 18-MC, exhibits similar actions as ibogaine on GDNF expression and ethanol self-administration.
Ibogaine is a naturally occurring alkaloid that has been reported to decrease various adverse phenotypes associated with exposure to drugs of abuse and alcohol in human and rodent models. Unfortunately, ibogaine cannot be used as a medication to treat addiction because of severe side effects. Previously, we reported that the desirable actions of ibogaine to reduce self-administration of, and relapse to, alcohol consumption are mediated via the upregulation of the expression of the glial cell line-derived neurotrophic factor (GDNF) in the midbrain ventral tegmental area (VTA), and the consequent activation of the GDNF pathway. The ibogaine metabolite, noribogaine, and a synthetic derivative of ibogaine, 18-Methoxycoronaridine (18-MC), possess a similar anti-addictive profile as ibogaine in rodent models, but without some of its adverse side effects. Here, we determined whether noribogaine and/or 18-MC, like ibogaine, increase GDNF expression, and whether their site of action to reduce alcohol consumption is the VTA. We used SH-SY5Y cells as a cell culture model and found that noribogaine, like ibogaine, but not 18-MC, induces a robust increase in GDNF mRNA levels. Next, we tested the effect of intra-VTA infusion of noribogaine and 18-MC on rat operant alcohol self-administration and found that noribogaine, but not 18-MC, in the VTA decreases responding for alcohol. Together, our results suggest that noribogaine and 18-MC have different mechanisms and sites of action. Topics: Alcohol Deterrents; Alcohol Drinking; Alcoholism; Animals; Cell Line, Tumor; Conditioning, Operant; Gene Expression; Humans; Ibogaine; Male; Motivation; Rats; Rats, Long-Evans; RNA, Messenger; Self Administration; Ventral Tegmental Area | 2010 |
Addiction research. Ibogaine therapy: a 'vast, uncontrolled experiment'.
Topics: Animals; Brain; Clinical Trials as Topic; Dopamine; Glial Cell Line-Derived Neurotrophic Factor; Glutamic Acid; Hallucinations; Hallucinogens; Humans; Ibogaine; Nerve Growth Factors; Receptors, Nicotinic; Receptors, Opioid; Selective Serotonin Reuptake Inhibitors; Serotonin; Substance-Related Disorders | 2005 |
Acute iboga alkaloid effects on extracellular serotonin (5-HT) levels in nucleus accumbens and striatum in rats.
The iboga alkaloid, ibogaine, its metabolite, noribogaine, and the congener, 18-methoxycoronaridine (18-MC) have all been claimed to have anti-addictive properties in animal models, but the mechanisms underlying these effects are unclear. Ibogaine and noribogaine were shown to have affinity for the serotonin transporter, and inhibition of serotonin reuptake has been proposed to be involved in their anti-addictive actions. It is not known yet if 18-MC also has this property. In vivo microdialysis and HPLC (microbore) were used to determine acute changes in extracellular serotonin levels in nucleus accumbens (NAC) and striatum (STR) after both i.p. (40 mg/kg for all drugs) and i.v. (1-10 mg/kg for ibogaine and noribogaine) drug administration in awake freely moving female Sprague-Dawley rats (250-275 g). After i.p. administration, ibogaine, noribogaine and 18-MC had very different effects on extracellular serotonin levels in both NAC and STR: ibogaine elicited large increases (up to 25-fold in NAC and 10- fold in STR), noribogaine produced moderate increases (up to 8-fold in NAC and 5-fold in STR), and 18-MC had no effect in either brain region. These and other data suggest that (1) the serotonergic system may not be an essential factor in the anti-addictive actions of these drugs; (2) ibogaine (or an unidentified metabolite) may release serotonin as well as inhibit its reuptake; (3) stimulation of the ascending serotonergic system may mediate ibogaine's hallucinogenic effect; and (4) 18-MC probably has no affinity for the serotonin transporter, and is unlikely to be a hallucinogen. Topics: Animals; Corpus Striatum; Extracellular Space; Female; Hallucinogens; Ibogaine; Injections, Intraperitoneal; Injections, Intravenous; Microdialysis; Nucleus Accumbens; Rats; Rats, Sprague-Dawley; Serotonin; Synaptic Transmission | 1998 |
Time-dependent interactions between iboga agents and cocaine.
The purpose of this study was to clarify the effects of iboga agents on cocaine-induced hyperactivity. Both inhibition and enhancement of cocaine-induced activity by ibogaine have been reported. In the present study, rats were treated with either ibogaine (40 mg/kg, i.p.), noribogaine (40 mg/kg, i.p.), 18-methoxycoronaridine (40 mg/kg, i.p.), or saline, 1 or 19 h prior to the administration of cocaine (20 mg/kg, i.p.) or saline. Motor activity was monitored thereafter for 3 h. All three iboga agents had acute inhibitory effects and delayed potentiating effects on cocaine-induced hyperactivity. These time-dependent effects, which could not be attributed to the motor activity induced by the iboga agents alone, account for divergent results reported in the literature. Topics: Animals; Cocaine; Drug Interactions; Female; Ibogaine; Motor Activity; Narcotics; Rats; Rats, Sprague-Dawley; Time Factors | 1997 |