norgestomet and deslorelin

norgestomet has been researched along with deslorelin* in 2 studies

Other Studies

2 other study(ies) available for norgestomet and deslorelin

ArticleYear
Differential requirement for pulsatile LH during the follicular phase and exposure to the preovulatory LH surge for oocyte fertilization and embryo development in cattle.
    Theriogenology, 2002, Volume: 58, Issue:9

    The requirement for pulsatile LH and the LH surge for the acquisition of oocyte fertilizing potential and embryo developmental competency was examined in Zebu heifers. Follicular growth was superstimulated using the GnRH agonist-LH protocol in which pulsatile LH and the preovulatory LH surge are blocked. In experiment 1, heifers were assigned on Day 7 of the estrous cycle to receive: group 1A (n = 5), 1.5 mg norgestomet (NOR) implant; group 1B (n = 5), GnRH agonist implant. Follicular growth was superstimulated with 2x daily injections of FSH from Day 10 (a.m.) to Day 13 (p.m.), with PGF2alpha injection on Day 12 (a.m.). Heifers were ovariectomized on Day 15 (a.m.) and oocytes were placed immediately into fertilization, without 24 h maturation. Respective cleavage and blastocyst development rates were: group 1A, 0/64 oocytes (0%) and 0/64 (0%); group 1B, 34/70 oocytes (48.6%) and 2/70 (2.9%). In experiment 2, heifers were assigned on Day 7 of the estrous cycle to receive: group 2A (n = 10), 1.5 mg NOR implant; group 2B (n = 10), GnRH agonist implant; group 2C (n = 10), GnRH agonist implant. Follicular growth was superstimulated as in experiment 1 above. Heifers in groups 2A and 2B received an injection of 25 mg LH on Day 14 (p.m.) and all heifers were ovariectomized on Day 15 (a.m.); oocytes were placed immediately into fertilization without 24 h maturation. Cleavage rates were similar for heifers in group 2A (84/175 oocytes, 48.0%), group 2B (61/112 oocytes, 54.5%) and group 2C (69/163, 42.3%). Blastocyst development rates were similar for heifers in group 2A (22/175 oocytes, 12.6%) and group 2B (25/112 oocytes, 22.3%) and lower (P < 0.05) for heifers in group 2C (9/163 oocytes, 5.5%). Oocytes obtained from heifers treated with GnRH agonist, without injection of exogenous LH, underwent cleavage indicating that neither pulsatile LH nor the preovulatory LH surge are obligatory for nuclear maturation in cattle oocytes. Exposure to a surge-like increase in plasma LH increased embryo developmental competency indicating that the preovulatory LH surge promotes cytoplasmic maturation. The findings have important implications for controlling the in vivo maturation of oocytes before in vitro procedures including nuclear transfer.

    Topics: Animals; Blastocyst; Cattle; Cleavage Stage, Ovum; Drug Implants; Embryo, Mammalian; Female; Fertilization in Vitro; Follicular Phase; Luteinizing Hormone; Ovarian Follicle; Ovariectomy; Periodicity; Pregnenediones; Triptorelin Pamoate

2002
Close synchrony of ovulation in superstimulated heifers that have a downregulated anterior pituitary gland and are induced to ovulate with exogenous LH.
    Theriogenology, 1998, Volume: 49, Issue:3

    The synchrony of ovulation was examined in superstimulated heifers that had a downregulated pituitary gland and which were induced to ovulate by injection of exogenous LH. The pituitary was downregulated and desensitized to GnRH by treatment with the GnRH agonist deslorelin. Nulliparous heifers (3.5 yr old) at random stages of the estrous cycle were assigned to 1 of 3 groups, and on Day -7 received the following treatments: Group 1 (control, n = 8), 1 norgestomet ear implant; Group 2 (GnRH agonist, n = 8); Group 3 (GnRH agonist-LH protocol, n = 8), 2 deslorelin ear implants. Ovarian follicle growth in all heifers was superstimulated with twice-daily intramuscular injections of FSH (Folltropin-V): Day O, 40 mg (80 mg total dose); Day 1, 30 mg; Day 2; 20 mg; Day 3, 10 mg. On Day 2, all heifers were given a luteolytic dose of PGF (7 A.M.), Norgestomet implants were removed from heifers in Group 1 (6 P.M.). Heifers in Group 3 were given an injection of 25 mg, i.m. porcine LH (Lutropin) on Day 4 (4 P.M.). Ovarian follicle status was monitored at 8-h intervals from Day 3 (8 A.M.) to Day 6 (4 P.M.) using an Aloka Echo Camera and 7.5 MHz transducer. Heifers in Groups 2 and 3 exhibited estrus earlier (P < 0.05) than heifers in Group 1. Heifers in Group 2 did not have a preovulatory LH surge and they did not ovulate. Individual control heifers in Group 1 ovulated between 12 A.M. on Day 5 and 8 A.M. on Day 6. Heifers with deslorelin implants and injected with LH in Group 3 ovulated between 4 P.M. on Day 5 and 8 A.M. on Day 6. It was confirmed that superstimulated heifers with GnRH agonist implants can be induced to ovulate with LH. It was also demonstrated that ovulation is closely synchronized after injection of LH. Thus, a single, fixed-time insemination schedule could be used in a GnRH agonist-LH superovulation protocol, with significant practical and economic advantages for superovulation and embryo transfer programs.

    Topics: Animals; Cattle; Drug Implants; Enzyme Inhibitors; Estrus; Female; Follicle Stimulating Hormone; Gonadotropin-Releasing Hormone; Luteinizing Hormone; Ovulation; Ovulation Induction; Pituitary Gland, Anterior; Pregnenediones; Progesterone; Progesterone Congeners; Triptorelin Pamoate

1998