norclozapine and bifeprunox

norclozapine has been researched along with bifeprunox* in 2 studies

Other Studies

2 other study(ies) available for norclozapine and bifeprunox

ArticleYear
Discriminative stimulus properties of S32504, a novel D3/D2 receptor agonist and antiparkinson agent, in rats: attenuation by the antipsychotics, aripiprazole, bifeprunox, N-desmethylclozapine, and by selective antagonists at dopamine D2 but not D3 recept
    Psychopharmacology, 2007, Volume: 191, Issue:3

    Drug-discrimination studies have proven instructive in the characterization of psychotropic agents, a procedure applied herein to the novel antiparkinson agent, S32504. This highly selective agonist at dopamine D(3) and (less potently) D(2) receptors displays potent antiparkinson, neuroprotective and antidepressant properties (Millan et al., J Pharmacol Exp Ther 309:936-950, 2004a; Millan et al., J Pharmacol Exp Ther 309:903-920, 2004b; Millan et al., J Pharmacol Exp Ther 309:921-935, 2004c).. To generate a discriminative stimulus (DS) with S32504 and undertake substitution/antagonism studies with diverse antiparkinson and antipsychotic agents.. Using a two-lever, fixed-ratio 10 schedule, rats were trained to recognize S32504 (0.04 mg/kg, s.c.) from saline.. S32504 displayed dose-dependent and stereospecific substitution in comparison to its less active racemic form, (+/-) S31411, and to its inactive (-) distomer, S32601. Apomorphine, and the selective D(3)/D(2) receptor agonists, ropinirole, PD128,907, 7-OH-DPAT and CGS15855A, fully (=80%) substituted for S32504, whereas D(4) and D(1)/D(5) receptor agonists were ineffective. The selective D(3) vs D(2) receptor partial agonist, BP897, did not substitute for S32504 and the selective D(3) receptor antagonists, S33084, SB277,011, GR218,231, PNU99194A and S14297, did not block its DS properties. By contrast, S32504 lever selection was blocked by the preferential D(2) vs D(3) receptor antagonists, L741,626 and S23199, and by the D(2)/D(3) antagonists, raclopride and haloperidol. The D(2)/D(3) receptor partial agonists and antipsychotics, aripiprazole, bifeprunox, N-desmethylclozapine and preclamol did not substitute for S32504: indeed, they dose-dependently attenuated its DS properties.. The antiparkinson agent, S32504, displays DS properties principally mediated by high-efficacy activation of D(2) receptors Antipsychotics known to act as partial agonists at D(2)/D(3) receptors attenuate DS properties of S32504, actions reflecting their low efficacy at these sites.

    Topics: Animals; Antiparkinson Agents; Antipsychotic Agents; Aripiprazole; Behavior, Animal; Benzoxazoles; Clozapine; Discrimination Learning; Discrimination, Psychological; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Male; Oxazines; Piperazines; Quinolones; Rats; Rats, Wistar; Receptors, Dopamine; Receptors, Dopamine D2; Receptors, Dopamine D3

2007
Partial agonist actions of aripiprazole and the candidate antipsychotics S33592, bifeprunox, N-desmethylclozapine and preclamol at dopamine D(2L) receptors are modified by co-transfection of D(3) receptors: potential role of heterodimer formation.
    Journal of neurochemistry, 2007, Volume: 102, Issue:4

    Aripiprazole and the candidate antipsychotics, S33592, bifeprunox, N-desmethylclozapine (NDMC) and preclamol, are partial agonists at D(2) receptors. Herein, we examined their actions at D(2L) and D(3) receptors expressed separately or together in COS-7 cells. In D(2L) receptor-expressing cells co-transfected with (D(3) receptor-insensitive) chimeric adenylate cyclase-V/VI, drugs reduced forskolin-stimulated cAMP production by approximately 20% versus quinpirole (48%). Further, quinpirole-induced inhibition was blunted by aripiprazole and S33592, confirming partial agonist properties. In cells co-transfected with equal amounts of D(2L)and D(3) receptors (1 : 1), efficacies of aripiprazole and S33592 were attenuated. Further, in cells co-transfected with D(2L) and an excess of D(3) receptors (1 : 3), aripiprazole and S33592 were completely inactive, and they abolished the actions of quinpirole. Likewise, bifeprunox, NDMC and preclamol lost agonist properties in cells co-transfected with D(2L)and D(3) receptors. Accordingly, at split D(2trunk)/D(3tail) and D(3trunk)/D(2tail) chimeras, agonist actions of quinpirole were blocked by aripiprazole and S33592 that, like bifeprunox, NDMC and preclamol, were inactive alone. Conversely, when a 12 amino acid sequence in the third intracellular loop of D(3) receptors was replaced by the homologous sequence of D(2L) receptors, aripiprazole, S33592, bifeprunox, NDMC and preclamol inhibited cAMP formation by approximately 20% versus quinpirole (42%). Moreover, at D(2L) receptor-expressing cells co-transfected with modified D(3i3(D2)) receptors, drugs behaved as partial agonists. To summarize, low efficacy agonist actions of aripiprazole, S33592, bifeprunox, NDMC and preclamol at D(2L) receptors are abrogated upon co-expression of D(3) receptors, probably due to physical association and weakened coupling efficacy. These findings have implications for the functional profiles of antipsychotics.

    Topics: Adenylyl Cyclases; Animals; Antipsychotic Agents; Aripiprazole; Benzamides; Benzoxazoles; Carrier Proteins; Chlorocebus aethiops; Clozapine; COS Cells; Cricetinae; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Drug Interactions; Piperazines; Piperidines; Quinolones; Receptors, Dopamine D2; Receptors, Dopamine D3; Transfection

2007