norclozapine has been researched along with 4-n-butyl-1-(4-(2-methylphenyl)-4-oxo-1-butyl)-piperidine-hydrogen-chloride* in 2 studies
2 other study(ies) available for norclozapine and 4-n-butyl-1-(4-(2-methylphenyl)-4-oxo-1-butyl)-piperidine-hydrogen-chloride
Article | Year |
---|---|
Fluorescent derivatives of AC-42 to probe bitopic orthosteric/allosteric binding mechanisms on muscarinic M1 receptors.
Two fluorescent derivatives of the M1 muscarinic selective agonist AC-42 were synthesized by coupling the lissamine rhodamine B fluorophore (in ortho and para positions) to AC42-NH(2). This precursor, prepared according to an original seven-step procedure, was included in the study together with the LRB fluorophore (alone or linked to an alkyl chain). All these compounds are antagonists, but examination of their ability to inhibit or modulate orthosteric [(3)H]NMS binding revealed that para-LRB-AC42 shared several properties with AC-42. Carefully designed experiments allowed para-LRB-AC42 to be used as a FRET tracer on EGFP-fused M1 receptors. Under equilibrium binding conditions, orthosteric ligands, AC-42, and the allosteric modulator gallamine behaved as competitors of para-LRB-AC42 binding whereas other allosteric compounds such as WIN 51,708 and N-desmethylclozapine were noncompetitive inhibitors. Finally, molecular modeling studies focused on putative orthosteric/allosteric bitopic poses for AC-42 and para-LRB-AC42 in a 3D model of the human M1 receptor. Topics: Allosteric Regulation; Calcium; Fluorescence Resonance Energy Transfer; Fluorescent Dyes; Green Fluorescent Proteins; HEK293 Cells; Humans; Models, Molecular; Molecular Probes; Piperidines; Radioligand Assay; Receptor, Muscarinic M1; Recombinant Fusion Proteins; Rhodamines; Solubility; Structure-Activity Relationship | 2012 |
Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation.
Transmembrane domain 3 (TM3) plays a crucial role mediating muscarinic acetylcholine receptor activation by acetylcholine, carbachol, and other muscarinic agonists. We compared the effects of point mutations throughout TM3 on the interactions of carbachol, 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), a potent structural analog of AC-42 called 4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC-260584), N-desmethylclozapine, and clozapine with the M(1) muscarinic receptor. The binding and activation profiles of these ligands fell into three distinct patterns; one exemplified by orthosteric compounds like carbachol, another by structural analogs of AC-42, and a third by structural analogs of N-desmethylclozapine. All mutations tested severely reduced carbachol binding and activation of M(1). In contrast, the agonist actions of AC-42 and AC-260584 were greatly potentiated by the W101A mutation, slightly reduced by Y106A, and slightly increased by S109A. Clozapine and N-desmethylclozapine displayed substantially increased maximum responses at the Y106A and W101A mutants, slightly lower activity at S109A, but no substantial changes in potency. At L102A and N110A, agonist responses to AC-42, AC-260584, clozapine, and N-desmethylclozapine were all substantially reduced, but usually less than carbachol. D105A showed no functional responses to all ligands. Displacement and dissociation rate experiments demonstrated clear allosteric properties of AC-42 and AC-260584 but not for N-desmethylclozapine and clozapine, indicating that they may contact different residues than carbachol to activate M(1) but occupy substantially overlapping spaces, in contrast to AC-42 and AC-260584, which occupy separable spaces. These results show that M(1) receptors can be activated in at least three distinct ways and that there is no requirement for potent muscarinic agonists to mimic acetylcholine interactions with TM3. Topics: Benzoxazines; Cell Line; Clozapine; Humans; Muscarinic Agonists; Piperidines; Protein Conformation; Radioligand Assay; Receptor, Muscarinic M1 | 2006 |