noladin-ether has been researched along with virodhamine* in 3 studies
3 other study(ies) available for noladin-ether and virodhamine
Article | Year |
---|---|
The orphan receptor GPR55 is a novel cannabinoid receptor.
The endocannabinoid system functions through two well characterized receptor systems, the CB1 and CB2 receptors. Work by a number of groups in recent years has provided evidence that the system is more complicated and additional receptor types should exist to explain ligand activity in a number of physiological processes.. Cells transfected with the human cDNA for GPR55 were tested for their ability to bind and to mediate GTPgammaS binding by cannabinoid ligands. Using an antibody and peptide blocking approach, the nature of the G-protein coupling was determined and further demonstrated by measuring activity of downstream signalling pathways.. We demonstrate that GPR55 binds to and is activated by the cannabinoid ligand CP55940. In addition endocannabinoids including anandamide and virodhamine activate GTPgammaS binding via GPR55 with nM potencies. Ligands such as cannabidiol and abnormal cannabidiol which exhibit no CB1 or CB2 activity and are believed to function at a novel cannabinoid receptor, also showed activity at GPR55. GPR55 couples to Galpha13 and can mediate activation of rhoA, cdc42 and rac1.. These data suggest that GPR55 is a novel cannabinoid receptor, and its ligand profile with respect to CB1 and CB2 described here will permit delineation of its physiological function(s). Topics: Amino Acid Sequence; Animals; Arachidonic Acids; Binding Sites; Binding, Competitive; Cannabidiol; Cannabinoids; Cell Line; Cloning, Molecular; Cyclohexanols; Down-Regulation; Endocannabinoids; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Ligands; Mice; Molecular Sequence Data; Organ Specificity; Polymerase Chain Reaction; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; RNA, Messenger; Signal Transduction; Structure-Activity Relationship | 2007 |
Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography-tandem electrospray ionization mass spectrometry.
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described for the simultaneous identification and quantification of eight endocannabinoid (EC) or related "entourage" compounds in rat brain tissue. Analytes were extracted and purified from rat brain tissue using an ethyl acetate/hexane solvent extraction, followed by a solid phase extraction (SPE) protocol. Chromatographic separation was achieved using a gradient elution, with a mobile phase of acetonitrile, formic acid, and ammonium acetate, at pH 3.6. A Thermo Hypersil C8 HyPurity Advance column (100x2.1 mm i.d., 3 microm) was used with a flow rate of 0.3 ml/min). Anandamide (AEA), 2-arachidonyl glycerol (2-AG), 2-arachidonylglyceryl ether (noladin ether), O-arachidonyl ethanolamide (virodhamine), 2-linoleoyl glycerol (2-LG), arachidonyl glycine, oleoyl ethanolamide (OEA), and palmitoyl ethanolamide (PEA) were quantified by positive ion tandem electrospray ionization mass spectrometry. Internal standards were deuterated AEA, deuterated 2-AG, and heptadecanoyl ethanolamide (HEA). Linearity was proven over the range of 25 fmol to 250 pmol, with a limit of detection of 25 fmol on column for all analytes except 2-AG, noladin ether, and 2-LG (250 fmol). This corresponded to a limit of quantification in biological tissue of 10 pmol/g for all analytes except 2-AG (100 pmol/g). Intra- and interday precision in biological tissue was routinely approximately 20% or lower, and accuracy was between 65% and 155%. This method was used to quantitatively profile regional differences in nine discrete rat brain regions for AEA, 2-AG, 2-LG, OEA, PEA, noladin ether, virodhamine, and arachidonyl glycine. Topics: Animals; Arachidonic Acids; Brain Chemistry; Cannabinoid Receptor Modulators; Cannabinoids; Chromatography, Liquid; Endocannabinoids; Glycerides; Glycine; Male; Oleic Acids; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Reproducibility of Results; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry | 2007 |
Persistent anxiogenic effects of a single or repeated doses of cocaine and methamphetamine: interactions with endogenous cannabinoid receptor ligands.
As persistent behavioural changes, such as increased anxiety-related behaviours, can be predicted based on the phenomenon of psychostimulant-induced neuronal plasticity, the time course (3-, 5- and 10-day time points) of the effects of both a single and repeated (daily for 7 days) i.p. administrations of cocaine (COC) and methamphetamine (MA) on anxiety-related behavioural symptoms in the elevated plus-maze test were examined in mice. Furthermore, based on the reported interactions between brain dopamine versus cannabinoid (CB) receptors and the contribution of CB receptors to the occurrence of persistent anxiety-related behavioural symptoms, the interactions of the agonist CP 55940 (CP) and the endogenous ligands anandamide (arachidonylethanolamide: AEA), 2-arachidonylglycerol (ARA), N-arachidonyldopamine (NADA), noladin ether (NL), and virodhamine (VA) with the COC- or MA-induced anxiety-related behaviours were also studied. In both an acute experiment using a single COC (30 mg/kg) or MA (4 mg/kg) dose and a chronic experiment using repeated COC (15 mg/kg) or MA (2 mg/kg) doses, anxiety-related behavioural symptoms were observed similarly at 3- and 5-day time points, but disappeared at the 10-day time point. Among the CB ligands, the agonists CP, AEA, ARA, NADA, and NL provided strong protective effects against each parameter at 3- and 5-day time points. Therefore, it was concluded that both COC and MA caused persistent anxiety-related behavioural symptoms following both a single and repeated treatments. Since these anxiogenic effects were attenuated by the endogenous CB agonists, the involvement of brain CB receptors was suspected. Topics: Analysis of Variance; Animals; Anxiety; Arachidonic Acids; Behavior, Animal; Cannabinoids; Cocaine; Cyclohexanols; Dopamine; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Glycerides; Injections, Intraperitoneal; Male; Maze Learning; Methamphetamine; Mice; Mice, Inbred ICR; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Time Factors | 2005 |