nocodazole has been researched along with vinblastine sulfate in 16 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 6 (37.50) | 29.6817 |
2010's | 8 (50.00) | 24.3611 |
2020's | 2 (12.50) | 2.80 |
Authors | Studies |
---|---|
Aghaee, E; Böhm, KJ; Ghasemi, JB; Ivanov, I; Müller, K; Prinz, H; Ridder, AK; Vogel, K | 1 |
Briguglio, I; Carta, A; Corona, P; Fermeglia, M; Laurini, E; Piras, S; Pirisi, MA; Pricl, S | 1 |
Kimura, KI; Koshino, H; Kurisawa, N; Onodera, T; Toda, T; Yukawa, M | 1 |
Aghaee, E; Daniliuc, CG; Ghasemi, JB; Ivanov, I; Müller, K; Prinz, H; Waltemate, J | 1 |
Burger, AM; Camacho Gomez, JA; Düssmann, H; Günther, EG; Hirano, T; Ishii, Y; Prehn, JH; Prinz, H; Schmidt, P; Stoiber, T; Umezawa, K; Unger, E | 1 |
Baasner, S; Böhm, KJ; Gerlach, M; Günther, EG; Müller, K; Prinz, H; Schmidt, P; Unger, E; Zuse, A | 2 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Baasner, S; Böhm, KJ; Gerlach, M; Günther, EG; Müller, K; Prinz, H; Schmidt, P; Unger, E | 2 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Baasner, S; Böhm, KJ; Gerlach, M; Günther, EG; Müller, K; Nickel, HC; Prinz, H; Schmidt, P; Unger, E | 1 |
Böhm, KJ; Müller, K; Prinz, H; Surkau, G | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Aicher, B; Amon, P; Böhm, KJ; Chamasmani, B; Gerlach, M; Günther, EG; Ivanov, I; Müller, K; Prinz, H; Vogel, K | 1 |
16 other study(ies) available for nocodazole and vinblastine sulfate
Article | Year |
---|---|
N-Heterocyclic (4-Phenylpiperazin-1-yl)methanones Derived from Phenoxazine and Phenothiazine as Highly Potent Inhibitors of Tubulin Polymerization.
Topics: Alkylating Agents; Antineoplastic Agents; Ethylenediamines; G2 Phase Cell Cycle Checkpoints; Humans; K562 Cells; Molecular Docking Simulation; Oxazines; Phenothiazines; Piperazines; Polymerization; Quantitative Structure-Activity Relationship; Tubulin; Tubulin Modulators | 2017 |
Triazolopyridinyl-acrylonitrile derivatives as antimicrotubule agents: Synthesis, in vitro and in silico characterization of antiproliferative activity, inhibition of tubulin polymerization and binding thermodynamics.
Topics: Acrylonitrile; Antineoplastic Agents; Binding Sites; Cell Line; Cell Proliferation; Dose-Response Relationship, Drug; Humans; Models, Molecular; Molecular Structure; Polymerization; Pyridines; Structure-Activity Relationship; Thermodynamics; Triazoles; Tubulin; Tubulin Modulators | 2017 |
Kolavenic acid analog restores growth in HSET-overproducing fission yeast cells and multipolar mitosis in MDA-MB-231 human cells.
Topics: Cell Line, Tumor; Centrosome; Diterpenes; Dose-Response Relationship, Drug; Humans; Kinesins; Mitosis; Molecular Structure; Schizosaccharomyces; Spindle Apparatus; Structure-Activity Relationship | 2020 |
10-(4-Phenylpiperazine-1-carbonyl)acridin-9(10H)-ones and related compounds: Synthesis, antiproliferative activity and inhibition of tubulin polymerization.
Topics: Acridines; Antineoplastic Agents; Binding Sites; Cell Proliferation; G2 Phase Cell Cycle Checkpoints; Humans; K562 Cells; M Phase Cell Cycle Checkpoints; Molecular Conformation; Molecular Docking Simulation; Piperazines; Structure-Activity Relationship; Tubulin; Tubulin Modulators | 2021 |
Novel benzylidene-9(10H)-anthracenones as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization.
Topics: Anthracenes; Antineoplastic Agents; Apoptosis; Biopolymers; Blotting, Western; Cell Cycle; Cell Survival; Drug Screening Assays, Antitumor; Humans; K562 Cells; Microscopy, Electron; Structure-Activity Relationship; Tubulin | 2003 |
9-Benzylidene-naphtho[2,3-b]thiophen-4-ones as novel antimicrotubule agents-synthesis, antiproliferative activity, and inhibition of tubulin polymerization.
Topics: Animals; Antineoplastic Agents; Cell Cycle; Cell Proliferation; Cell Survival; Colchicine; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Female; Flow Cytometry; Humans; Inhibitory Concentration 50; K562 Cells; Leukemia P388; Mice; Molecular Structure; Structure-Activity Relationship; Thiophenes; Tubulin; Tubulin Modulators; Tumor Cells, Cultured | 2006 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Sulfonate derivatives of naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-anthracenone as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization.
Topics: Anthracenes; Cell Cycle; Cell Line, Tumor; Colchicine; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Humans; Naphthalenes; Nocodazole; Podophyllotoxin; Structure-Activity Relationship; Thiophenes; Tubulin; Tubulin Modulators | 2007 |
10-(2-oxo-2-phenylethylidene)-10H-anthracen-9-ones as highly active antimicrotubule agents: synthesis, antiproliferative activity, and inhibition of tubulin polymerization.
Topics: Anthracenes; Binding, Competitive; Cell Line, Tumor; Cell Proliferation; Colchicine; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; G2 Phase; Humans; Protein Binding; Structure-Activity Relationship; Tubulin; Tubulin Modulators | 2009 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Synthesis, antiproliferative activity and inhibition of tubulin polymerization by 1,5- and 1,8-disubstituted 10H-anthracen-9-ones bearing a 10-benzylidene or 10-(2-oxo-2-phenylethylidene) moiety.
Topics: Anthracenes; Antineoplastic Agents; Benzylidene Compounds; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Humans; Protein Multimerization; Protein Structure, Quaternary; Tubulin | 2010 |
Synthesis, antiproliferative activity and inhibition of tubulin polymerization by anthracenone-based oxime derivatives.
Topics: Anthracenes; Antineoplastic Agents; Cell Proliferation; Humans; Inhibitory Concentration 50; K562 Cells; Oximes; Protein Multimerization; Protein Structure, Quaternary; Tubulin | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
N-benzoylated phenoxazines and phenothiazines: synthesis, antiproliferative activity, and inhibition of tubulin polymerization.
Topics: Antineoplastic Agents; Biopolymers; Cell Cycle; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Humans; Organ Specificity; Oxazines; Phenothiazines; Structure-Activity Relationship; Tubulin; Tubulin Modulators | 2011 |
Phenylimino-10H-anthracen-9-ones as novel antimicrotubule agents-synthesis, antiproliferative activity and inhibition of tubulin polymerization.
Topics: Anthracenes; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Humans; Microtubules; Molecular Structure; Schiff Bases; Stereoisomerism; Structure-Activity Relationship; Tubulin | 2011 |