nocodazole has been researched along with pyrazolanthrone in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Dvorák, Z; Maurel, P; Modrianský, M; Pascussi, JM; Ulrichová, J; Vilarem, MJ | 1 |
Ciani, L; Salinas, PC | 1 |
Hendricks, M; Jesuthasan, S | 1 |
5 other study(ies) available for nocodazole and pyrazolanthrone
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Disruption of microtubules leads to glucocorticoid receptor degradation in HeLa cell line.
Topics: Animals; Anthracenes; Chlorocebus aethiops; Colchicine; COS Cells; Cysteine Proteinase Inhibitors; Cytosol; Dexamethasone; Enzyme Inhibitors; HeLa Cells; Humans; Intranuclear Space; JNK Mitogen-Activated Protein Kinases; Leupeptins; Microtubules; Mutation; NF-kappa B; Nocodazole; Proteasome Endopeptidase Complex; Protein Transport; Receptors, Glucocorticoid; Transfection; Ubiquitin; Vincristine | 2005 |
c-Jun N-terminal kinase (JNK) cooperates with Gsk3beta to regulate Dishevelled-mediated microtubule stability.
Topics: Adaptor Proteins, Signal Transducing; Animals; Animals, Newborn; Anisomycin; Anthracenes; Bucladesine; Cell Differentiation; Cell Line, Tumor; Cells, Cultured; Cerebellum; Dishevelled Proteins; Enzyme Activation; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; JNK Mitogen-Activated Protein Kinases; Mice; Microtubules; Neuroblastoma; Neurons; Nocodazole; Phosphoproteins; Time Factors; Transfection; Wnt Proteins | 2007 |
PHR regulates growth cone pausing at intermediate targets through microtubule disassembly.
Topics: Animals; Anthracenes; Apoptosis Regulatory Proteins; Calcium-Calmodulin-Dependent Protein Kinases; Cells, Cultured; Death-Associated Protein Kinases; Dose-Response Relationship, Drug; Electroporation; Enzyme Inhibitors; Gene Expression Regulation; Green Fluorescent Proteins; Growth Cones; Imidazoles; MAP Kinase Kinase 4; Membrane Proteins; Mice; Mice, Transgenic; Microtubules; Neurons; Nocodazole; Paclitaxel; Phosphorylation; Prosencephalon; Pyridines; Signal Transduction; Spinal Cord; Tubulin Modulators; Zebrafish; Zebrafish Proteins | 2009 |