nnz-2566 and glycyl-prolyl-glutamic-acid

nnz-2566 has been researched along with glycyl-prolyl-glutamic-acid* in 5 studies

Other Studies

5 other study(ies) available for nnz-2566 and glycyl-prolyl-glutamic-acid

ArticleYear
NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury.
    Journal of neurotrauma, 2009, Volume: 26, Issue:1

    Glycine-proline-glutamate (GPE) is an N-terminal tripeptide endogenously cleaved from insulin-like growth factor-1 in the brain and is neuroprotective against hypoxic-ischemic brain injury and neurodegeneration. NNZ-2566 is an analog of GPE designed to have improved bioavailability. In this study, we tested NNZ-2566 in a rat model of penetrating ballistic-type brain injury (PBBI) and assessed its effects on injury-induced histopathology, behavioral deficits, and molecular and cellular events associated with inflammation and apoptosis. In the initial dose-response experiments, NNZ-2566 (0.01-3 mg/kg/h x 12 h intravenous infusion) was given at 30 min post-injury and the therapeutic time window was established by delaying treatments 2-4 h post-injury, but with the addition of a 10- or 30-mg/kg bolus dose. All animals survived 72 h. Neuroprotection was evaluated by balance beam testing and histopathology. The effects of NNZ-2566 on injury-induced changes in Bax and Bcl-2 proteins, activated microgliosis, neutrophil infiltration, and astrocyte reactivity were also examined. Behavioral results demonstrated that NNZ-2566 dose-dependently reduced foot faults by 19-66% after acute treatments, and 35-55% after delayed treatments. Although gross lesion volume was not affected, NNZ-2566 treatment significantly attenuated neutrophil infiltration and reduced the number of activated microglial cells in the peri-lesion regions of the PBBI. PBBI induced a significant upregulation in Bax expression (36%) and a concomitant downregulation in Bcl-2 expression (33%), both of which were significantly reversed by NNZ-2566. Collectively, these results demonstrated that NNZ-2566 treatment promoted functional recovery following PBBI, an effect related to the modulation of injury-induced neural inflammatory and apoptotic mechanisms.

    Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Apoptosis Regulatory Proteins; Astrocytes; Brain; Brain Injuries; Disease Models, Animal; Dose-Response Relationship, Drug; Encephalitis; Gliosis; Injections, Intravenous; Microglia; Movement Disorders; Nerve Degeneration; Neuroprotective Agents; Oligopeptides; Rats; Rats, Sprague-Dawley; Recovery of Function; Treatment Outcome

2009
NNZ-2566: a Gly-Pro-Glu analogue with neuroprotective efficacy in a rat model of acute focal stroke.
    Journal of the neurological sciences, 2009, Mar-15, Volume: 278, Issue:1-2

    The N-terminal cleavage product of human insulin-like growth factor-1 (IGF-1) in the brain is the tripeptide molecule Glypromate (Gly-Pro-Glu). Glypromate has demonstrated neuroprotective effects in numerous in vitro and in vivo models of brain injury and is in clinical trials for the prevention of cognitive impairment following cardiac surgery. NNZ-2566 is a structural analogue of Glypromate, resulting from alpha-methylation of the proline moiety, which has improved the elimination half-life and oral bioavailability over the parent peptide. In vivo, NNZ-2566 reduces injury size in rats subjected to focal stroke. An intravenous infusion of NNZ-2566 of 4 h duration (3-10 mg/kg/h), initiated 3 h after endothelin-induced middle-cerebral artery constriction, significantly reduced infarct area as assessed on day 5. Neuroprotective efficacy in the MCAO model was also observed following oral administration of the drug (30-60 mg/kg), when formulated as a microemulsion. In vitro, NNZ-2566 significantly attenuates apoptotic cell death in primary striatal cultures, suggesting attenuation of apoptosis is one mechanism of action underlying its neuroprotective effects. NNZ-2566 is currently in clinical trials for the treatment of cognitive deficits following traumatic brain injury, and these data further support the development of the drug as a neuroprotective agent for acute brain injury.

    Topics: Administration, Oral; Animals; Apoptosis; Blood Chemical Analysis; Brain; Disease Models, Animal; Female; Infarction, Middle Cerebral Artery; Infusions, Intravenous; Male; Microdialysis; Neuroprotective Agents; Okadaic Acid; Oligopeptides; Rats; Rats, Sprague-Dawley; Stroke

2009
NNZ-2566, a glypromate analog, attenuates brain ischemia-induced non-convulsive seizures in rats.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2009, Volume: 29, Issue:12

    Ischemic and traumatic brain injuries often induce non-convulsive seizures (NCSs), which likely contribute to the worsening of neurological outcomes. Here, we evaluated the effect of glycyl-L-methylprolyl-L-glutamic acid (NNZ-2566) to lessen the severity of NCSs caused by permanent middle cerebral artery occlusion (pMCAo). Continuous electroencephalographic recordings were performed in rats during pMCAo. Glycyl-L-methylprolyl-L-glutamic acid (3, 10, or 100 mg/kg bolus followed by an infusion of a fixed dose of 3 mg/kg per hour for 12 h) was delivered at 20 mins after pMCAo (before the first NCS event) or delayed until immediately after the first NCS event occurred. Control rats received pMCAo and saline treatment. The results revealed that 91% of the saline-treated animals had NCSs (23 episodes per rat and 1238 secs per rat) with an onset latency of 35 mins after injury. When NNZ-2566 was administered before the NCS events, it dose-dependently reduced the NCS incidence to 36%-80%, decreased NCS frequency to 5-16 episodes per rat, and shortened the total duration of NCS to 251-706 secs per rat. The two high doses significantly reduced the infarct volume by 28%-30%. Delayed treatment also attenuated NCS duration but had no effect on the infarct volume. Results indicate that NNZ-2566 possesses a unique therapeutic potential as a safe prophylactic agent that synergistically provides neuroprotection and reduces injury-induced seizures.

    Topics: Animals; Brain Infarction; Brain Ischemia; Electroencephalography; Male; Neuroprotective Agents; Oligopeptides; Rats; Rats, Sprague-Dawley; Seizures

2009
The neuroprotective activity of GPE tripeptide analogues does not correlate with glutamate receptor binding affinity.
    Bioorganic & medicinal chemistry letters, 2006, Jul-01, Volume: 16, Issue:13

    The influence of several modifications on the GPE tripeptide structure upon the binding to GluRs and on their neuroprotective effects has been studied. The results indicated that the prevention of neuronal death showed by GPE and some analogues is not directly related to their affinity at glutamate receptors.

    Topics: Animals; Binding, Competitive; Cell Death; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Hippocampus; Molecular Structure; Neurons; Neuroprotective Agents; Oligopeptides; Protein Binding; Rats; Receptors, Glutamate; Stereoisomerism; Structure-Activity Relationship

2006
Analogues of the neuroprotective tripeptide Gly-Pro-Glu (GPE): synthesis and structure-activity relationships.
    Bioorganic & medicinal chemistry letters, 2005, May-02, Volume: 15, Issue:9

    A series of GPE analogues, including modifications at the Pro and/or Glu residues, was prepared and evaluated for their NMDA binding and neuroprotective effects. Main results suggest that the pyrrolidine ring puckering of the Pro residue plays a key role in the biological responses, while the preference for cis or trans rotamers around the Gly-Pro peptide bond is not important.

    Topics: Animals; Glutamic Acid; Indicators and Reagents; Neuroprotective Agents; Oligopeptides; Rats; Structure-Activity Relationship; Synaptic Membranes

2005