nitrophenols has been researched along with stannic-oxide* in 6 studies
6 other study(ies) available for nitrophenols and stannic-oxide
Article | Year |
---|---|
Development of alginate@tin oxide-cobalt oxide nanocomposite based catalyst for the treatment of wastewater.
In this study, tin oxide‑cobalt oxide nanocatalyst was prepared by a simple method, which grew in spherical particles with an average diameter of 30 nm. Tin oxide-cobalt oxide was further wrapped in alginate polymer hydrogel (Alg@tin oxide-cobalt oxide), and both materials were utilized as nanocatalysts for the catalytic transformation of different pollutants. Tin oxide-cobalt oxide and Alg@tin oxide-cobalt oxide nanocatalysts were tested for the catalytic reduction of 4-nitrophenol, congo red, methyl orange, methylene blue (MB) and potassium ferricyanide in which sodium borohydride was used as a reducing agent. Tin oxide-cobalt oxide and Alg@tin oxide-cobalt oxide nanocatalysts synergistically reduced MB in shorter time (2.0 and 4.0 min) compared to other dyes. The reduction conditions were optimized by changing different parameters. The rate constants for MB reduction were calculated and found to be 1.5714 min Topics: Alginates; Azo Compounds; Borohydrides; Catalysis; Cobalt; Congo Red; Ferricyanides; Kinetics; Methylene Blue; Nanocomposites; Nanotechnology; Nitrophenols; Oxidation-Reduction; Oxides; Tin Compounds; Wastewater; Water Pollutants, Chemical; Water Purification | 2021 |
Well-crystalline porous ZnO-SnO2 nanosheets: an effective visible-light driven photocatalyst and highly sensitive smart sensor material.
This work demonstrates the synthesis and characterization of porous ZnO-SnO2 nanosheets prepared by the simple and facile hydrothermal method at low-temperature. The prepared nanosheets were characterized by several techniques which revealed the well-crystallinity, porous and well-defined nanosheet morphology for the prepared material. The synthesized porous ZnO-SnO2 nanosheets were used as an efficient photocatalyst for the photocatalytic degradation of highly hazardous dye, i.e., direct blue 15 (DB 15), under visible-light irradiation. The excellent photocatalytic degradation of prepared material towards DB 15 dye could be ascribed to the formation of ZnO-SnO2 heterojunction which effectively separates the photogenerated electron-hole pairs and possess high surface area. Further, the prepared porous ZnO-SnO2 nanosheets were utilized to fabricate a robust chemical sensor to detect 4-nitrophenol in aqueous medium. The fabricated sensor exhibited extremely high sensitivity of ~ 1285.76 µA/mmol L(-1)cm(-2) and an experimental detection limit of 0.078 mmol L(-1) with a linear dynamic range of 0.078-1.25 mmol L(-1). The obtained results confirmed that the prepared porous ZnO-SnO2 nanosheets are potential material for the removal of organic pollutants under visible light irradiation and efficient chemical sensing applications. Topics: Azo Compounds; Biosensing Techniques; Catalysis; Light; Limit of Detection; Microscopy, Electron, Transmission; Nanostructures; Nitrophenols; Photolysis; Porosity; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Tin Compounds; Zinc Oxide | 2015 |
A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds.
Tin oxide (SnO2) nanoparticles of sizes ∼4.5, ∼10 and ∼30 nm were successfully synthesized by a simple chemical precipitation method using amino acid, glycine which acts as a complexing agent and surfactant, namely sodium dodecyl sulfate (SDS) as a stabilizing agent, at various calcination temperatures of 200, 400 and 600°C. This method resulted in the formation of spherical SnO2 nanoparticles and the size of the nanoparticles was found to be a factor of calcination temperature. The spherical SnO2 nanoparticles show a tetragonal rutile crystalline structure. A dramatic increase in band gap energy (3.8-4.21 eV) was observed with a decrease in grain size (30-4.5 nm) due to three dimensional quantum confinement effect shown by the synthesized SnO2 nanoparticles. SnO2 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and fourier transformed infrared spectroscopy (FT-IR). The optical properties were investigated using UV-visible spectroscopy. These SnO2 nanoparticles were employed as catalyst for the reduction of p-nitro phenol to p-amino phenol in aqueous medium for the first time. The synthesized SnO2 nanoparticles act as an efficient photocatalyst in the degradation of methyl violet 6B dye under direct sunlight. For the first time, methyl violet 6B dye was degraded by SnO2 nanoparticles under direct sunlight. Topics: Aminophenols; Catalysis; Glycine; Green Chemistry Technology; Nanoparticles; Nitrophenols; Photolysis; Sodium Dodecyl Sulfate; Tin Compounds | 2015 |
Preparation and electrochemical properties of Ce-Ru-SnO2 ternary oxide anode and electrochemical oxidation of nitrophenols.
A cerium doped ternary SnO(2) based oxides anode that is CeO(2)-RuO(2)-SnO(2) (Ce-Ru-SnO(2)) anode, was prepared by facile thermal decomposition technique. XRD was used to characterize the crystal structures of modified SnO(2) anodes. Electrochemical impedance spectroscopy (EIS) and accelerated life test were also utilized to study the electrochemical property of Ce-Ru-SnO(2) anode. The results indicated that Ce-Ru-SnO(2) anode possessed smaller charge transfer resistance and longer service life than other modified SnO(2) anodes. Oxidants, such as hydroxyl radicals, hydrogen peroxide and hypochlorite ions were determined. Electrochemical oxidation of nitrophenols (NPs) were conducted and compared with previous studies. The degradation of nitrophenols revealed two distinguishing laws for mononitrophenol and multinitrophenols. The Ce-Ru-SnO(2) anode is considered to be a promising material for the treatment of organic pollutants due to its high electrochemical activity and benign stability. Topics: Biological Oxygen Demand Analysis; Cerium; Electrochemistry; Electrodes; Hydrogen Peroxide; Hydroxyl Radical; Hypochlorous Acid; Nitrophenols; Oxidants; Oxidation-Reduction; Ruthenium; Tin Compounds; X-Ray Diffraction | 2012 |
Facile synthesis of two-dimensional graphene/SnO₂ /Pt ternary hybrid nanomaterials and their catalytic properties.
In this paper, we reported a simple, aqueous-phase route to the synthesis of two-dimensional graphene/SnO(2) composite nanosheets (GSCN) hybrid nanostructures consisting of 5 nm Pt nanoparticles supported on the both sides of GSCN. Functional two-dimensional GSCN were obtained through the reduction of graphene oxide (GO) using SnCl(2) in the presence of polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA). The main advantages of this preparation are that the reduction of GO, the formation of SnO(2) and the functionalization of GSCN were achieved simultaneously through one-pot reaction. GSCN/Pt ternary hybrid nanomaterials were generated by in situ reduction of negatively charged PtCl(6)(2-) precursors adsorbed on the positively charged surface of GSCN through electrostatic attraction. The as-synthesized GSCN/Pt ternary hybrid nanomaterials exhibited high cycle stabilization during the catalytic reduction of p-nitrophenol into p-aminophenol by NaBH(4). Additionally, our approach is expected to extend to other hybrid nanomaterials. We believe that the obtained GSCN/Pt ternary hybrid nanomaterials have great potential for applications in other field, such as electrochemical energy storage, sensors, and so on. Topics: Allyl Compounds; Aminophenols; Borohydrides; Catalysis; Graphite; Nanostructures; Nitrophenols; Oxidation-Reduction; Platinum; Quaternary Ammonium Compounds; Tin Compounds | 2011 |
Measurement of phenols dearomatization via electrolysis: the UV-Vis solid phase extraction method.
Dearomatization levels during electrochemical oxidation of p-methoxyphenol (PMP) and p-nitrophenol (PNP) have been determined through UV-Vis spectroscopy using solid phase extraction (UV-Vis/SPE). The results show that the method is satisfactory to determine the ratio between aromatic compounds and aliphatic acids and reaction kinetics parameters during treatment of wastewater, in agreement with results obtained from numerical deconvolution of UV-Vis spectra. Analysis of solutions obtained from electrolysis of substituted phenols on antimony-doped tin oxide (SnO(2)--Sb) showed that an electron acceptor substituting group favored the aromatic ring opening reaction, preventing formation of intermediate quinone during oxidation. Topics: Anisoles; Antimony; Electrodes; Electrolysis; Hydrocarbons, Aromatic; Nitrophenols; Oxidation-Reduction; Solid Phase Extraction; Solutions; Spectrophotometry, Ultraviolet; Tin Compounds | 2010 |