nitrophenols and scytolone

nitrophenols has been researched along with scytolone* in 1 studies

Other Studies

1 other study(ies) available for nitrophenols and scytolone

ArticleYear
Quantum mechanical design of enzyme active sites.
    The Journal of organic chemistry, 2008, Feb-01, Volume: 73, Issue:3

    The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.

    Topics: Acrolein; Aldehydes; Binding Sites; Catalysis; Cocaine; Enzyme Activation; Enzymes; Hydrolysis; Isomerism; Models, Molecular; Molecular Structure; Naphthols; Nitrophenols; Peptides; Proline; Quantum Theory; Sarin; Substrate Specificity; Water

2008