nitrophenols has been researched along with scytolone* in 1 studies
1 other study(ies) available for nitrophenols and scytolone
Article | Year |
---|---|
Quantum mechanical design of enzyme active sites.
The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes. Topics: Acrolein; Aldehydes; Binding Sites; Catalysis; Cocaine; Enzyme Activation; Enzymes; Hydrolysis; Isomerism; Models, Molecular; Molecular Structure; Naphthols; Nitrophenols; Peptides; Proline; Quantum Theory; Sarin; Substrate Specificity; Water | 2008 |