nitrophenols has been researched along with nilutamide* in 2 studies
1 review(s) available for nitrophenols and nilutamide
Article | Year |
---|---|
Bioactivation and hepatotoxicity of nitroaromatic drugs.
Certain drugs containing a nitroaromatic moiety (e.g., tolcapone, nimesulide, nilutamide, flutamide, nitrofurantoin) have been associated with organ-selective toxicity including rare cases of idiosyncratic liver injury. What they have in common is the potential for multistep nitroreductive bioactivation (6-electron transfer) that produces the potentially hazardous nitroanion radical, nitroso intermediate, and N-hydroxy derivative. These intermediates have been associated with increased oxidant stress and targeting of nucleophilic residues on proteins and nucleic acids. However, other mechanisms including the formation of oxidative metabolites and mitochondrial liability, as well as inherent toxicokinetic properties, also determine the drugs' overall potency. Therefore, structural modification not only of the nitro moiety but also of ring substituents can greatly reduce toxicity. Novel concepts have revealed that, besides the classical microsomal nitroreductases, cytosolic and mitochondrial enzymes including nitric oxide synthase can also bioactivate certain nitroarenes (nilutamide). Furthermore, animal models of silent mitochondrial dysfunction have demonstrated that a mitochondrial oxidant stress posed by certain nitroaromatic drugs (nimesulide) can produce significant mitochondrial injury if superimposed on a genetic mitochondrial abnormality. Finally, there may be mechanisms for all nitroaromatic drugs that do not involve bioactivation of the nitro group, e.g., AHR interactions with flutamide. Taken together, the focus of research on the hepatic toxicity of nitroarene-containing drugs has shifted over the past years from the identification of the reactive intermediates generated during the bioreductive pathway to the underlying biomechanisms of liver injury. Most likely one of the next paradigm shifts will include the identification of determinants of susceptibility to nitroaromatic drug-induced hepatotoxicity. Topics: Benzophenones; Biotransformation; Chemical and Drug Induced Liver Injury; Flutamide; Imidazolidines; Nifedipine; Nitro Compounds; Nitrofurantoin; Nitrophenols; Sulfonamides; Tolcapone | 2006 |
1 other study(ies) available for nitrophenols and nilutamide
Article | Year |
---|---|
Phase I and phase II reductive metabolism simulation of nitro aromatic xenobiotics with electrochemistry coupled with high resolution mass spectrometry.
Electrochemistry combined with (liquid chromatography) high resolution mass spectrometry was used to simulate the general reductive metabolism of three biologically important nitro aromatic molecules: 3-trifluoromethyl-4-nitrophenol (TFM), niclosamide, and nilutamide. TFM is a pesticide used in the Laurential Great Lakes while niclosamide and nilutamide are used in cancer therapy. At first, a flow-through electrochemical cell was directly connected to a high resolution mass spectrometer to evaluate the ability of electrochemistry to produce the main reduction metabolites of nitro aromatic, nitroso, hydroxylamine, and amine functional groups. Electrochemical experiments were then carried out at a constant potential of -2.5 V before analysis of the reduction products by LC-HRMS, which confirmed the presence of the nitroso, hydroxylamine, and amine species as well as dimers. Dimer identification illustrates the reactivity of the nitroso species with amine and hydroxylamine species. To investigate xenobiotic metabolism, the reactivity of nitroso species to biomolecules was also examined. Binding of the nitroso metabolite to glutathione was demonstrated by the observation of adducts by LC-ESI(+)-HRMS and the characteristics of their MSMS fragmentation. In conclusion, electrochemistry produces the main reductive metabolites of nitro aromatics and supports the observation of nitroso reactivity through dimer or glutathione adduct formation. Topics: Chromatography, Liquid; Computer Simulation; Electrochemistry; Glutathione; Imidazolidines; Niclosamide; Nitrophenols; Oxidation-Reduction; Spectrometry, Mass, Electrospray Ionization; Xenobiotics | 2014 |