nitrophenols has been researched along with naphthalene* in 6 studies
6 other study(ies) available for nitrophenols and naphthalene
Article | Year |
---|---|
Enhanced sorption of naphthalene and p-nitrophenol by nano-SiO2 modified with a cationic surfactant.
In this study, we observed that modification of nano-oxides (e.g., nano-SiO2) with cationic surfactants (e.g., cetyl pyridinium chloride, CPC) could be a potential way to make nano-oxides be superior sorbents with a partition mechanism for the sorptive removal of organic contaminants from wastewater where the coated CPC was an effective organic phase for partitioning. The partitioning of nonpolar naphthalene into coated CPC was induced by hydrophobic effect alone and presenting linear isotherms, while that of polar p-nitrophenol was induced by not only the hydrophobic effect but also the hydrogen-bonding interaction and presenting isotherm nonlinearity. The sorption affinity for naphthalene and p-nitrophenol partitioning into the coated CPC and the configuration of coated CPC remained unchanged although the amounts of coated CPC were increased. Linear relationships were established between the coated CPC amounts and the sorption capacities of naphthalene or p-nitrophenol, which could be used to predict the sorption of organic contaminants on surfactant-modified nano-oxides. In addition, these observed results would be also valuable for estimating the environmental behaviors and risks of nano-SiO2 and organic contaminants because nano-SiO2 would be inevitably coated with ubiquitous surfactants in the environment due to the discharging from the wide domestic and industry applications. Topics: Adsorption; Cations; Cetylpyridinium; Models, Chemical; Nanoparticles; Naphthalenes; Nitrophenols; Silicon Dioxide; Spectroscopy, Fourier Transform Infrared; Surface-Active Agents; Temperature | 2013 |
Peroxygenase based sensor for aromatic compounds.
We report on the redox behaviour of the peroxygenase from Agrocybe aegerita (AaeAPO) which has been electrostatically immobilized in a matrix of chitosan-embedded gold nanoparticles on the surface of a glassy carbon electrode. AaeAPO contains a covalently bound heme-thiolate as the redox active group that exchanges directly electrons with the electrode via the gold nanoparticles. The formal potential E°' of AaeAPO in the gold nanoparticles-chitosan film was estimated to be -(286±9) mV at pH 7.0. The heterogeneous electron transfer rate constant (k(s)) increases from 3.7 in the scan rate range from 0.2 to 3.0 V s(-1) and level off at 63.7 s(-1). Furthermore, the peroxide-dependent hydroxylation of aromatic compounds was applied to develop a sensor for naphthalene and nitrophenol. The amperometric measurements of naphthalene are based on the indication of H(2)O(2) consumption. For the chitosan-embedded gold nanoparticle system, the linear range extends from 4 to 40 μM naphthalene with a detection limit of 4.0 μM (S/N=3) and repeatability of 5.7% for 40 μM naphthalene. Topics: Agrocybe; Biosensing Techniques; Chitosan; Electrochemical Techniques; Electrodes; Electron Transport; Enzymes, Immobilized; Gold; Hydrocarbons, Aromatic; Metal Nanoparticles; Mixed Function Oxygenases; Naphthalenes; Nitrophenols | 2010 |
Saturation mutagenesis of Burkholderia cepacia R34 2,4-dinitrotoluene dioxygenase at DntAc valine 350 for synthesizing nitrohydroquinone, methylhydroquinone, and methoxyhydroquinone.
Saturation mutagenesis of the 2,4-dinitrotoluene dioxygenase (DDO) of Burkholderia cepacia R34 at position valine 350 of the DntAc alpha-subunit generated mutant V350F with significantly increased activity towards o-nitrophenol (47 times), m-nitrophenol (34 times), and o-methoxyphenol (174 times) as well as an expanded substrate range that now includes m-methoxyphenol, o-cresol, and m-cresol (wild-type DDO had no detectable activity for these substrates). Another mutant, V350M, also displays increased activity towards o-nitrophenol (20 times) and o-methoxyphenol (162 times) as well as novel activity towards o-cresol. Products were synthesized using whole Escherichia coli TG1 cells expressing the recombinant R34 dntA loci from pBS(Kan)R34, and the initial rates of product formation were determined at 1 mM substrate by reverse-phase high-pressure liquid chromatography. V350F produced both nitrohydroquinone at a rate of 0.75 +/- 0.15 nmol/min/mg of protein and 3-nitrocatechol at a rate of 0.069 +/- 0.001 nmol/min/mg of protein from o-nitrophenol, 4-nitrocatechol from m-nitrophenol at 0.29 +/- 0.02 nmol/min/mg of protein, methoxyhydroquinone from o-methoxyphenol at 2.5 +/- 0.6 nmol/min/mg of protein, methoxyhydroquinone from m-methoxyphenol at 0.55 +/- 0.02 nmol/min/mg of protein, both methylhydroquinone at 1.52 +/- 0.02 nmol/min/mg of protein and 2-hydroxybenzyl alcohol at 0.74 +/- 0.05 nmol/min/mg of protein from o-cresol, and methylhydroquinone at 0.43 +/- 0.1 nmol/min/mg of protein from m-cresol. V350M produced both nitrohydroquinone at a rate of 0.33 nmol/min/mg of protein and 3-nitrocatechol at 0.089 nmol/min/mg of protein from o-nitrophenol, methoxyhydroquinone from o-methoxyphenol at 2.4 nmol/min/mg of protein, methylhydroquinone at 1.97 nmol/min/mg of protein and 2-hydroxybenzyl alcohol at 0.11 nmol/min/mg of protein from o-cresol. The DDO variants V350F and V350M also exhibited 10-fold-enhanced activity towards naphthalene (8 +/- 2.6 nmol/min/mg of protein), forming (1R,2S)-cis-1,2-dihydro-1,2-dihydroxynaphthalene. Hence, mutagenesis of wild-type DDO through active-site engineering generated variants with relatively high rates toward a previously uncharacterized class of substituted phenols for the nitroarene dioxygenases; seven previously uncharacterized substrates were evaluated for wild-type DDO, and four novel monooxygenase-like products were found for the DDO variants V350F and V350M (methoxyhydroquinone, methylhydroquinone, 2-hydroxybenzyl alc Topics: Amino Acid Substitution; Burkholderia cepacia; Cresols; Dinitrobenzenes; Escherichia coli; Genetic Engineering; Hydroquinones; Models, Molecular; Mutagenesis; Naphthalenes; Nitrophenols; Oxygenases | 2004 |
Interactions of organic contaminants with mineral-adsorbed surfactants.
Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing. Topics: Adsorption; Disinfectants; Naphthalenes; Nitrophenols; Phenol; Soil Pollutants; Surface-Active Agents; Water Pollution | 2003 |
Developmental toxicity of nine selected compounds following prenatal exposure in the mouse: naphthalene, p-nitrophenol, sodium selenite, dimethyl phthalate, ethylenethiourea, and four glycol ether derivatives.
Ethylene glycol dimethyl ether (EGdiME), diethylene glycol dimethyl ether (diEGdiME), triethylene glycol dimethyl ether (triEGdiME), diethylene glycol diethyl ether (diEGdiEE), ethylenethiourea (ETU), sodium selenite (SS), dimethyl phthalate (DMP), naphthalene (NAP), or p-nitrophenol (PNP) were administered by gavage for eight consecutive days to female CD-1 mice. Weight loss was insensitive as an index of sublethal adult toxicity and was inadequate for determining a maximum tolerated dose. LD50 values indicate that SS, NAP, and PNP were more toxic (8.4, 353.6, and 625.7 mg/kg, respectively) than the polyglycol ethers, ETU, and DMP (LD50 values ranged from 2525.8 to 6281.9 mg/kg). Each of the compounds was administered on d 7 through 14 to pregnant animals at a single dose estimated to be at or just below the threshold of adult lethality. In such a reproductive study, each of the compounds could be categorized on the basis of the pattern of maternal lethality and fetotoxicity which it produced. The number of dams with complete resorptions was significantly increased after administration of ETU, and no mice in the EGdiME-, diEGdiME-, or triEGdiME-treated groups delivered any viable offspring. Maternal lethality was significant in the EGdiME, triEGdiME, PNP, and NAP groups. There was a slight reduction in the average number of live pups per litter in the diEGdiEE- and PNP-treated groups and a significant reduction in the NAP group. The number dead per litter was increased with diEGdiEE. SS and DMP had no effect on maternal or fetal survival at the doses administered. Individual pup weight at d 1 postpartum was only significantly reduced by diEGdiEE, and no gross congenital abnormalities were detected in neonates from any treatment group. These results provide guidelines for the subsequent toxicity testing of these chemicals. Topics: Administration, Oral; Analysis of Variance; Animals; Birth Weight; Body Weight; Drug Evaluation, Preclinical; Ethylene Glycols; Ethylenethiourea; Female; Fetal Death; Fetus; Imidazoles; Lethal Dose 50; Maternal-Fetal Exchange; Mice; Naphthalenes; Nitrophenols; Phthalic Acids; Pregnancy; Reproduction; Selenious Acid; Selenium | 1985 |
On the metabolism of some aromatic nitro-compounds by different species of animal. II. The elimination of various nitro-compounds from the blood of different species of animal.
Topics: Animals; Biological Transport; Cresols; Naphthalenes; Nitro Compounds; Nitrophenols | 1954 |