nitrophenols and alpha-naphthoflavone

nitrophenols has been researched along with alpha-naphthoflavone* in 2 studies

Other Studies

2 other study(ies) available for nitrophenols and alpha-naphthoflavone

ArticleYear
Effects of alcohol-induced increase in CYP2E1 content in human liver microsomes on the activity and cooperativity of CYP3A4.
    Archives of biochemistry and biophysics, 2021, 02-15, Volume: 698

    We investigate the effect of the alcohol-induced increase in the content of CYP2E1 in human liver microsomes (HLM) on the function of CYP3A4. Membrane incorporation of the purified CYP2E1 into HLM considerably increases the rate of metabolism of 7-benzyloxyquinoline (BQ) and attenuates the homotropic cooperativity observed with this CYP3A4-specific substrate. It also eliminates the activating effect of α-naphthoflavone (ANF) seen in some HLM samples. To probe the physiological relevance of these effects, we compared three pooled preparations of HLM from normal donors (HLM-N) with a pooled preparation from ten heavy alcohol consumers (HLM-A). The composition of the P450 pool in all samples was characterized by the mass-spectrometric determination of 11 cytochrome P450 species. The fractional content of CYP2E1 in HLM-A was from 2.0 to 3.4 times higher than in HLM-N. In contrast, the content of CYP3A4 in HLM-A was the lowest among all samples. Despite that, HLM-A exhibited a much higher metabolism rate and a lower homotropic cooperativity with BQ, similar to CYP2E1-enriched HLM-N. To substantiate the involvement of interactions between CYP2E1 and CYP3A4 in these effects, we probed hetero-association of these proteins in CYP3A4-containing Supersomes™ with a technique employing CYP2E1 labeled with BODIPY-618 maleimide. These experiments evinced the interactions between the two enzymes and revealed an inhibitory effect of ANF on their association. Our results demonstrate that the functional properties of CYP3A4 are fundamentally dependent on the composition of the cytochrome P450 ensemble and suggest a possible impact of chronic alcohol exposure on the pharmacokinetics of drugs metabolized by CYP3A4.

    Topics: Amino Acid Sequence; Amitriptyline; Benzoflavones; Cytochrome P-450 CYP2E1; Cytochrome P-450 CYP3A; Enzyme Activators; Ethanol; Female; Humans; Ivermectin; Male; Microsomes, Liver; Midazolam; Nitrophenols; Quinolines

2021
The metabolism and DNA binding of the cooked-food mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in precision-cut rat liver slices.
    Chemico-biological interactions, 1995, May-19, Volume: 96, Issue:2

    Precision-cut liver slices prepared from Aroclor 1254 pretreated male rats were used to investigate the metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). The acetyltransferase and sulfotransferase inhibitors, pentachlorophenol (PCP) and 2,6-dichloro-4-nitrophenol (DCNP), and the cytochrome P450 inhibitor, alpha-naphthoflavone (ANF), were used to modulate PhIP metabolism and DNA and protein adduct formation. PCP and DCNP had similar effects on the formation of some PhIP metabolites. PCP and DCNP decreased the formation of 4'-(2-amino-1-methylimidazo[4,5-b]pyrid-6-yl)phenyl sulfate (4'-PhIP-sulfate) and 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-hydroxy-PhIP)-glucuronide to 10% and 55% of controls, respectively. 2-Amino-1-methyl-4'-hydroxy-6-phenylimidazo[4,5-b]pyridine (4'-hydroxy-PhIP) was increased by 50% relative to control levels due to PCP and DCNP treatment. PCP and DCNP had different effects on the formation of other PhIP metabolites. Metabolite formation as percent of control for the uncharacterized metabolite, 'Peak A', was 50% and 100% in incubations with PCP and DCNP, respectively. Formation of 4'-hydroxy-PhIP-glucuronide was decreased to 10% of controls with PCP and increased to 147% of controls with DCNP. PCP and DCNP had no effect on the formation of an unidentified metabolite, 'Peak B'. ANF decreased metabolite formation by 60-95%. None of the enzyme inhibitors had a statistically significant effect on PhIP-DNA binding. Covalent binding of PhIP to protein was slightly decreased in incubations containing DCNP or PCP. The lack of significant changes in covalent binding to either DNA or protein suggests that additional pathways may be important in PhIP bioactivation in rat liver slices. With ANF, there was a significant decrease (35%) in protein binding. These observations on the effects of PCP, DCNP and ANF on PhIP metabolism as well as on covalent binding of PhIP to tissue macromolecules are in close agreement with what was reported earlier in hepatocytes. This indicates that tissue slices from various target tissues for tumorigenesis will be a useful in vitro tool for future studies on heterocyclic amine metabolism. This study provides another important example of the utility of precision-cut tissue slices to investigate xenobiotic metabolism and toxicity.

    Topics: Animals; Aroclors; Benzoflavones; Carcinogens; Chlorodiphenyl (54% Chlorine); Chromatography, High Pressure Liquid; Culture Techniques; Cytochrome P-450 Enzyme System; DNA; DNA Adducts; Food Contamination; Food Handling; Imidazoles; Liver; Male; Mutagens; Nitrophenols; Pentachlorophenol; Rats; Rats, Sprague-Dawley

1995