nitrophenols and 4-nitrobenzyl-chloride

nitrophenols has been researched along with 4-nitrobenzyl-chloride* in 3 studies

Other Studies

3 other study(ies) available for nitrophenols and 4-nitrobenzyl-chloride

ArticleYear
Sensitivity of glutathione S-transferases to high doses of acrylamide in albino wistar rats: Affinity purification, biochemical characterization and expression analysis.
    Ecotoxicology and environmental safety, 2019, Oct-30, Volume: 182

    The main objectives of this study were to purify the glutathione S-transfereses (GSTs) and assess the effect of high doses of acrylamide (ACR) on male albino Wistar rat liver, kidney, testis and bran GST activities, and expression analysis of GST. ACR (50 mg/300 ml) was ingested for 40 days (20 doses) in drinking water on alternative days, on 40 day post ingestion the control and treated tissues were collected for GST purification by affinity column and biochemical characterization of GSTs by substrate specificities, and GST expression by immuno dot blots. In the analysis of the purified GSTs, we observed that liver GSTs were resolved in to three bands known as Yc, Yb and Ya; kidney GSTs were resolved in to two bands known as Yc and Ya; testis and brain GSTs were resolved as four bands known as Yc, Yb, Yβ and Yδ on 12.5% sodium dodecyl sulfate polyacrylamide gel (SDS PAGE). In the analysis of biochemical characterization, we observed a significant decrease (p < 0.05) in the specific activities of liver GST isoforms with the substrates 1-chloro 2,4-dinitrobenzene (CDNB), bromosulfophthalein (BSP), p-nitrophenyl acetate (pNPA), p-nitrobenzyl chloride (pNBC) and cumene hydroperoxide (CHP), but showed no activity with ethacrynic acid (ECA) and significant decrease (p < 0.05) in the specific activities of kidney GST isoforms with the substrates CDNB, pNPA, pNBC and CHP, but showed no activity with BSP and ECA, and a significant decrease (p < 0.05) in the specific activities of testis and brain GST isoforms with the substrates CDNB, BSP, pNPA, pNBC, ECA and CHP. In the analysis of immuno dot blots, we observed a decreased expression of liver, kidney, testis and brain GSTs. Through the affinity purification and biochemical characterization, we observed a tissue specific distribution of GSTs that is liver GSTs possess Yc, Yb and Ya sub units known as alpha (α) and mu (μ) class GSTs; kidney GSTs possess Yc and Ya sub units known as (α) alpha class GST; testis and brain GSTs possess Yc, Yb, Yβ and Yδ sub units known as alpha (α), mu (μ) and pi (π) class GSTs. Purification studies, biochemical characterization and immuno dot blot analysis were revealed the GSTs were sensitive to high doses of ACR and the high level exposure to ACR cause the damage of detoxification function of GST due to decreased expression and hence lead to cellular dysfunction of vital organs.

    Topics: Acrylamide; Animals; Electrophoresis, Polyacrylamide Gel; Glutathione; Glutathione Transferase; Isoenzymes; Kidney; Liver; Male; Nitrobenzenes; Nitrophenols; Rats; Rats, Wistar; Substrate Specificity; Testis; Tissue Distribution

2019
Single-nucleotide polymorphic variants of human glutathione transferase T1-1 differ in stability and functional properties.
    Archives of biochemistry and biophysics, 2009, Oct-01, Volume: 490, Issue:1

    We have previously expressed hexa-histidine-tagged human glutathione transferase GST T1-1 at very high levels in an Escherichia colilacZ mutagenicity assay strain. Ethylene dibromide (EDB), which is activated by GST T1-1, produces a potent response in the mutation assay. We have now constructed and expressed two SNP variants of wild-type GST T1-1:D141N and E173K. The EDB activation activities of both variant enzymes, as measured by the lacZ mutagenicity assay, are greatly reduced The D141N variant behaved similarly to the wild-type enzyme, in terms of expression level and specific activities for conjugation of glutathione with 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP), ethylene diiodide (EDI), and 4-nitrobenzyl chloride (NBCl), and for peroxidative detoxication of cumene hydroperoxide (CuOOH). In contrast, variant E173K is poorly expressed, has no detectable activity with EPNP, NBCl, or CuOOH, and has EDI activity much lower than that of the wild-type enzyme. The circular dichroism (CD) thermal denaturation profiles of the wild-type protein and variant D141N show a sharp two-state transition between native and denatured states. Variant E173K showed a very different profile, consistent with improper or incomplete protein folding. Our results show that SNP variants can give rise to GSTT1-1 proteins with significantly altered properties.

    Topics: Benzene Derivatives; Enzyme Stability; Epoxy Compounds; Genetic Variation; Glutathione Transferase; Humans; Hydrocarbons, Iodinated; Inactivation, Metabolic; Nitrobenzenes; Nitrophenols; Polymorphism, Single Nucleotide

2009
An ensemble of theta class glutathione transferases with novel catalytic properties generated by stochastic recombination of fragments of two mammalian enzymes.
    Journal of molecular biology, 2002, Apr-19, Volume: 318, Issue:1

    The correlation between sequence diversity and enzymatic function was studied in a library of Theta class glutathione transferases (GSTs) obtained by stochastic recombination of fragments of cDNA encoding human GST T1-1 and rat GST T2-2. In all, 94 randomly picked clones were characterized with respect to sequence, expression level, and catalytic activity in the conjugation reactions between glutathione and six alternative electrophilic substrates. Out of these six different compounds, dichloromethane is a selective substrate for human GST T1-1, whereas 1-menaphthyl sulfate and 1-chloro-2,4-dinitrobenzene are substrates for rat GST T2-2. The other three substances serve as substrates for both enzymes. Through this broad characterization, we have identified enzyme variants that have acquired novel activity profiles that differ substantially from those of the original GSTs. In addition, the expression levels of many clones were improved in comparison to the parental enzyme. A library of mutants can thus display a distribution of properties from which highly divergent evolutionary pathways may emerge, resembling natural evolutionary processes. From the GST library, a clone was identified that, by the point mutation N49D in the rat GST T2-2 sequence, has a 1700% increased activity with 1-menaphthyl sulfate and a 60% decreased activity with 4-nitrophenethyl bromide. Through the N49D mutation, the ratio of these activities has thus been altered 40-fold. An extensive characterization of a population of stochastically mutated enzymes can accordingly be used to find variants with novel substrate-activity profiles and altered catalytic properties. Recursive recombination of selected sequences displaying optimized properties is a strategy for the engineering of proteins for medical and biochemical applications. Such sequential design is combinatorial protein chemistry based on remodeling of existing structural scaffolds and has similarities to evolutionary processes in nature.

    Topics: Animals; Catalysis; Clone Cells; Dinitrochlorobenzene; Epoxy Compounds; Evolution, Molecular; Gene Library; Glutathione Transferase; Humans; Isoenzymes; Kinetics; Methylene Chloride; Models, Molecular; Mutation; Naphthalenes; Nitrobenzenes; Nitrophenols; Rats; Recombinant Proteins; Sequence Analysis, DNA; Structure-Activity Relationship; Substrate Specificity

2002