nitrophenols has been researched along with 4-hydroxybenzoic-acid* in 2 studies
2 other study(ies) available for nitrophenols and 4-hydroxybenzoic-acid
Article | Year |
---|---|
The crystal structures of native hydroquinone 1,2-dioxygenase from Sphingomonas sp. TTNP3 and of substrate and inhibitor complexes.
The crystal structure of hydroquinone 1,2-dioxygenase, a Fe(II) ring cleaving dioxygenase from Sphingomonas sp. strain TTNP3, which oxidizes a wide range of hydroquinones to the corresponding 4-hydroxymuconic semialdehydes, has been solved by Molecular Replacement, using the coordinates of PnpCD from Pseudomonas sp. strain WBC-3. The enzyme is a heterotetramer, constituted of two subunits α and two β of 19 and 38kDa, respectively. Both the two subunits fold as a cupin, but that of the small α subunit lacks a competent metal binding pocket. Two tetramers are present in the asymmetric unit. Each of the four β subunits in the asymmetric unit binds one Fe(II) ion. The iron ion in each β subunit is coordinated to three protein residues, His258, Glu264, and His305 and a water molecule. The crystal structures of the complexes with the substrate methylhydroquinone, obtained under anaerobic conditions, and with the inhibitors 4-hydroxybenzoate and 4-nitrophenol were also solved. The structures of the native enzyme and of the complexes present significant differences in the active site region compared to PnpCD, the other hydroquinone 1,2-dioxygenase of known structure, and in particular they show a different coordination at the metal center. Topics: Amino Acid Sequence; Binding Sites; Catalytic Domain; Crystallography, X-Ray; Dioxygenases; Hydroquinones; Iron; Nitrophenols; Parabens; Protein Conformation; Sequence Homology, Amino Acid; Sphingomonas | 2017 |
Do cyclodextrins bound to dextran microspheres act as sustained delivery systems of drugs?
The use of cyclodextrins (CDs) for controlled delivery of drugs is largely presented in the literature. However, the question of whether CDs themselves linked to a polymeric network are able to sustain the release of drugs still persists. Here, CD immobilization within dextran microspheres is reported, and CD-dextran complexes were packed in a glass column and then, the retention time of different drugs and drug model compounds was determined by liquid chromatography. The release profiles of drugs and of drug model compounds (indole, 3-nitrophenol, p-hydroxybenzoic acid, diclofenac), characterized by different values of the retention time (high, moderate or low), were investigated. The release rates were quite high even for drugs that exhibit very high retention time (high association equilibrium constant). Moreover, the volume of the release fluid strongly influences the rate of drug release. As a whole, "the sink conditions" must be continuously maintained, since at each drug concentration in the release medium, equilibrium occurs between the free and the CD-bound drug. Topics: alpha-Cyclodextrins; beta-Cyclodextrins; Chemistry, Pharmaceutical; Chromatography, Liquid; Cyclodextrins; Delayed-Action Preparations; Dextrans; Diclofenac; Drug Carriers; gamma-Cyclodextrins; Indoles; Kinetics; Microspheres; Models, Chemical; Nitrophenols; Parabens; Solubility; Technology, Pharmaceutical | 2014 |