nitrophenols has been researched along with 2-chlorophenol* in 9 studies
9 other study(ies) available for nitrophenols and 2-chlorophenol
Article | Year |
---|---|
Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples.
In this work, covalent triazine frameworks (CTFs) were introduced in stir bar sorptive extraction (SBSE) and a novel polydimethylsiloxane(PDMS)/CTFs stir bar coating was prepared by sol-gel technique for the sorptive extraction of eight phenols (including phenol, 2-chlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dimethylphenol, p-chloro-m-cresol and 2,4-dichlorophenol, 2,4,6-trichlorophenol) from environmental water samples followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. The prepared PDMS/CTFs coated stir bar showed good preparation reproducibility with the relative standard deviations (RSDs) ranging from 3.5 to 5.7% (n=7) in one batch, and from 3.7 to 9.3% (n=7) among different batches. Several parameters affecting SBSE of eight target phenols including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.08-0.30 μg/L. The linear range was 0.25-500 μg/L for 2-nitrophenol, 0.5-500 μg/L for phenol, 2-chlorophenol, 4-nitrophenol as well as 2,4-dimethylphenol, and 1-500 μg/L for p-chloro-m-cresol, 2,4-dichlorophenol as well as 2,4,6-trichlorophenol, respectively. The intra-day relative standard deviations (RSDs) were in the range of 4.3-9.4% (n=7, c=2 μg/L) and the enrichment factors ranged from 64.9 to 145.6 fold (theoretical enrichment factor was 200-fold). Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/CTFs stir bar showed better extraction efficiency for target phenol compounds. The proposed method was successfully applied to the analysis of phenols in environmental water samples and good relative recoveries were obtained with the spiking level at 2, 10, 50 μg/L, respectively. Topics: Chlorophenols; Chromatography, High Pressure Liquid; Dimethylpolysiloxanes; Hydrogen-Ion Concentration; Limit of Detection; Nitrophenols; Osmolar Concentration; Phenols; Reproducibility of Results; Rivers; Spectrophotometry, Ultraviolet; Triazines; Water Pollutants, Chemical | 2016 |
Evaluation of sunlight induced structural changes and their effect on the photocatalytic activity of V2O5 for the degradation of phenols.
Despite knowing the fact that vanadium pentoxide is slightly soluble in aqueous medium, its photocatalytic activity was evaluated for the degradation of phenol and its derivatives (2-hydroxyphenol, 2-chlorophenol, 2-aminophenol and 2-nitrophenol) in natural sunlight exposure. The prime objective of the study was to differentiate between the homogeneous and heterogeneous photocatalysis incurred by dissolved and undissolved V2O5 in natural sunlight exposure. V2O5 was synthesized by chemical precipitation procedure using Triton X-100 as morphology mediator and characterized by DRS, PLS, Raman, FESEM and XRD. A lower solubility of ∼ 5% per 100ml of water at 23 °C was observed after calcination at 600 °C. The study revealed no contribution of the dissolved V2O5 in the photocatalytic process. In sunlight exposure, V2O5 powder exhibited substantial activity for the degradation, however, a low mineralization of phenolic substrates was observed. The initial low activity of V2O5 followed by a sharp increase both in degradation and mineralization in complete spectrum sunlight exposure, was further investigated that revealed the decrease in the bandgap and the reduction in the particle size with the interaction of UV photons (<420 nm) as this effect was not observable in the exposure of visible region of sunlight. The role of the chemically different substituents attached to an aromatic ring at 2-positions and the secondary interaction of released ions during the degradation process with the reactive oxygen species (ROS) was also explored. Topics: Aminophenols; Catalysis; Catechols; Chlorophenols; Chromatography, High Pressure Liquid; Electrochemistry; Electrons; Hydrogen-Ion Concentration; Ions; Microscopy, Electron, Scanning; Nitrophenols; Particle Size; Phenol; Photochemistry; Photons; Reactive Oxygen Species; Semiconductors; Solubility; Spectrophotometry, Ultraviolet; Sunlight; Vanadium Compounds; X-Ray Diffraction | 2015 |
Kinetic study of the gas-phase reactions of chlorine atoms with 2-chlorophenol, 2-nitrophenol, and four methyl-2-nitrophenol isomers.
Anthropogenic activities are the main source of nitrophenols and chlorophenols in the atmosphere. Nitro and chlorophenols have a high potential to form ozone and secondary organic aerosol, thus investigations on the major photo oxidation pathways of these compounds are important to assess their contribution to urban air pollution and human health. Presented here are rate coefficients determined at atmospheric pressure and (298 ± 2) K using a relative kinetic method for the reactions of chlorine atoms with 2-chlorophenol (2ClP), 2-nitrophenol (2NP) and four methyl-2-nitrophenol (2-nitrocresol, nM2NP (n = 3,4,5,6)) isomers. The following rate coefficients (in units of cm(3) molecule(-1) s(-1)) have been obtained: (5.9 ± 1.5) × 10(-12) for 2ClP, (6.8 ± 2.3) × 10(-12) for 2NP, and (14.0 ± 4.9) × 10(-11), (4.3 ± 1.5) × 10(-11), (1.94 ± 0.67) × 10(-11) and (2.68 ± 0.75) × 10(-11) for the four methyl-2-nitrophenol isomers 3M2NP, 4M2NP, 5M2NP, and 6M2NP, respectively. This study represents the first kinetic investigation for the reaction of chlorine atoms with all the nitrophenols. In addition, to assist in the interpretation of the results, rate coefficients for the reactions of Cl atoms with the cresol ortho, meta, and para isomers have been determined for the first time. The rate coefficient for the reaction with 2ClP is in good agreement with previous data and the relative reactivity of 2NP, 4M2NP, 5M2NP, and 6M2NP can be rationalized based on known substituent effects. The rate coefficient for 3M2NP is anomalously large; the observation of significant NO2 production in only this reaction suggests that an ipso substitution mechanism is the cause of the enhanced reactivity. Topics: Air Pollutants; Chlorine; Chlorophenols; Cresols; Isomerism; Nitrophenols; Phase Transition; Volatile Organic Compounds | 2015 |
Aerobic biodegradation of a mixture of monosubstituted phenols in a sequencing batch reactor.
A sequencing batch reactor (SBR) was inoculated with p-nitrophenol-degrading activated sludge to biodegrade a mixture of monosubstituted phenols: p-nitrophenol (PNP), PNP and o-cresol; and PNP, o-cresol and o-chlorophenol. Settling times were progressively decreased to promote biomass granulation. PNP was completely biodegraded. The PNP and o-cresol mixture was also biodegraded although some transitory accumulation of intermediates occurred (mainly hydroquinone and catechol). o-Chlorophenol was not biodegraded and resulted in inhibition of o-cresol and PNP biodegradation and complete failure of the SBR within a few days. The biomass had very good settling properties when a settling time of 1 min was applied: sludge volume index (SVI₅) below 50 mL g(-1), SVI₅/SVI₃₀ ratio of 1 and average particle size of 200 μm. Topics: Acinetobacter; Aerobiosis; Arthrobacter; Batch Cell Culture Techniques; Biodegradation, Environmental; Biomass; Bioreactors; Catechols; Chlorophenols; Cresols; Hydroquinones; In Situ Hybridization, Fluorescence; Nitrophenols; Pseudomonas; Sewage; Temperature; Time Factors | 2013 |
Migration behavior of landfill leachate contaminants through alternative composite liners.
Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm+10 cm, k=10(-8)m/sn), R2: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm+10 cm, k=10⁻⁸ m/sn), R3: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+bentonite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn), and R4: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+zeolite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings. Topics: Aluminum Silicates; Anaerobiosis; Biodegradation, Environmental; Biotransformation; Chlorides; Chlorophenols; Clay; Cresols; Fresh Water; Kinetics; Metals, Heavy; Models, Chemical; Nitrogen; Nitrophenols; Phenols; Refuse Disposal; Water Pollutants, Chemical | 2011 |
Comparative study of the removal of phenolic compounds by biological and non-biological adsorbents.
The ability of biological and non-biological adsorbents to remove 2-nitrophenol (2-NP) and 2-chlorophenol (2-CP) from aqueous solutions in batch experiments at room temperature was compared. The marine seaweeds Macrocystis integrifolia Bory (S1) and Lessonia nigrescens Bory (S2) were cross-linked with CaCl(2) to enhance their mechanical properties. Natural bentonite was chemically exchanged with hexadecyltrimethylammonium bromide (B1) and bencyltriethylammonium chloride (B2) to increase their affinity towards organic compounds as well. The adsorption capacity of all of the adsorbents strongly depends on solution pH, whereas equilibrium assays showed a mixed mechanism according to the Langmuir and Freundlich isotherms. The maximum adsorption capacity of 2-NP follows the trend: S1>S2>B2>B1 within the range of 97.37 and 18.64 mg g(-1) whereas for 2-CP, it ranged between 24.18 and 9.95 mg g(-1) with the trend: S1>S2>B2 approximately B1. The importance of the octanol-water partition coefficient as the main factor on the adsorption of these compounds on two different kinds of adsorbents is discussed. Topics: Adsorption; Calcium Chloride; Cetrimonium; Cetrimonium Compounds; Chlorophenols; Nitrophenols; Octanols; Phenols; Seaweed; Water; Water Pollutants, Chemical; Water Purification | 2009 |
Elimination of phenol and aromatic compounds by zero valent iron and EDTA at low temperature and atmospheric pressure.
This work deals with a new abiotic oxidation process designed as a suitable pre-treatment step within a biological depuration of wastewater containing phenol or its derivatives (o-cresol, 2-chlorophenol and p-nitrophenol) or aniline. The reaction was carried out in a stirred tank reactor at 20 degrees C and atmospheric pressure in presence of the organic compound, 150mgl(-1), zero valent iron particles (10g), ethylenediamine tetraacetic acid (EDTA, 101mgl(-1)) and air. The experimental results show that 85% of phenol conversion can be achieved after 360min. 2-Chlorophenol was found to be more easily degradable and it is completely eliminated after 300min. The oxidation of o-cresol and aniline behaved more closely to phenol obtaining after 360min 70% and 68% of conversion respectively. p-Nitrophenol was a very refractory compound, giving only 28% of conversion after 360min. Moreover, the influence of some operating variables was studied over the following ranges: temperature from 20 to 50 degrees C, initial phenol concentration from 150 to 1000mgl(-1), EDTA concentration from 50 to 200mgl(-1) and iron particles from 5 to 20g. As expected, temperature strongly enhances phenol conversion. Also, an increase of the catalyst to phenol ratio or the iron or EDTA to phenol ratio improves the reaction rate. A preliminary kinetic analysis of the data shown that the rate of phenol disappearance is not first order with respect to the phenol. Topics: Aniline Compounds; Atmospheric Pressure; Catalysis; Chlorophenols; Cresols; Edetic Acid; Environmental Restoration and Remediation; Iron; Nitrophenols; Oxidation-Reduction; Phenols; Temperature; Water Purification | 2007 |
Comparative susceptibility of newborn and young rats to six industrial chemicals.
To elucidate the comparative susceptibility of newborn rats to chemicals, newborn and young animals were administered six industrial chemicals by gavage from postnatal days (PND) 4 to 21, and for 28 days starting at 5-6 weeks of age respectively, under the same experimental conditions as far as possible. As two new toxicity endpoints specific to this comparative analysis, presumed no-observed-adverse-effect-levels (pNOAELs) were estimated based on results of both main and dose-finding studies, and presumed unequivocally toxic levels (pUETLs) were also decided. pNOAELs for newborn and young rats were 40 and 200 for 2-chlorophenol, 100 and 100 for 4-chlorophenol, 30 and 100 for p-(alpha,alpha-dimethylbenzyl) phenol, 100 and 40 for (hydroxyphenyl)methyl phenol, 60 and 12 for trityl chloride, and 100 and 300 mg/kg/day for 1,3,5-trihydroxybenezene, respectively. To determine pUETLs, dose ranges were adopted in several cases because of the limited results of experimental doses. Values for newborn and young rats were thus estimated as 200-250 and 1000 for 2-chlorophenol, 300 and 500 for 4-chlorophenol, 300 and 700-800 for p-(alpha,alpha-dimethylbenzyl) phenol, 140-160 and 1000 for (hydroxyphenyl)methyl phenol, 400-500 and 300 for trityl chloride, and 500 and 1000 mg/kg/day for 1,3,5-trihydroxybenzene, respectively. In most cases, newborn rats were 2-5 times more susceptible than young rats in terms of both the pNOAEL and the pUETL. An exception was that young rats were clearly more susceptible than their newborn counterparts for trityl chloride. Topics: Animals; Animals, Newborn; Benzene Derivatives; Body Weight; Chlorophenols; Dose-Response Relationship, Drug; Female; Kidney; Liver; Male; Nitrophenols; No-Observed-Adverse-Effect Level; Organ Size; Phenols; Rats; Rats, Sprague-Dawley; Stomach; Trityl Compounds | 2005 |
Evaluation of a new solid-phase cartridge for the preconcentration of phenolic compounds in water.
The aim of this study is to evaluate the efficiency of a new solid-phase extraction cartridge, Spe-ed Advanta, in the extraction and preconcentration of four phenolic compounds (phenol, 2-chlorophenol, 2-nitrophenol, and 2,4-dichlorophenol) from water. The solid phase is a polystyrene-divinylbenzene resin modified with carboxylic groups, these polar groups improve the contact between the matrix and the aqueous solutions in the extraction of polar analytes. We studied several elution solvents in order to find the most efficient one. Sample concentration, sample volume, and sample pH are also investigated as well as the best method for drying the cartridge. Recoveries achieved with the new phase are compared with those obtained with Isolute ENV+, a non-modified polystyrene-divinylbenzene stationary bed. The best experimental conditions were then used for determination of the phenols in spiked environmental waters. Topics: Chlorophenols; Chromatography, Gas; Chromatography, High Pressure Liquid; Indicators and Reagents; Nitrophenols; Phenols; Water Pollutants, Chemical | 2004 |