nitrophenols has been researched along with 2-4-6-trichlorophenol* in 5 studies
5 other study(ies) available for nitrophenols and 2-4-6-trichlorophenol
Article | Year |
---|---|
Polydimethylsiloxane/covalent triazine frameworks coated stir bar sorptive extraction coupled with high performance liquid chromatography-ultraviolet detection for the determination of phenols in environmental water samples.
In this work, covalent triazine frameworks (CTFs) were introduced in stir bar sorptive extraction (SBSE) and a novel polydimethylsiloxane(PDMS)/CTFs stir bar coating was prepared by sol-gel technique for the sorptive extraction of eight phenols (including phenol, 2-chlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4-dimethylphenol, p-chloro-m-cresol and 2,4-dichlorophenol, 2,4,6-trichlorophenol) from environmental water samples followed by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. The prepared PDMS/CTFs coated stir bar showed good preparation reproducibility with the relative standard deviations (RSDs) ranging from 3.5 to 5.7% (n=7) in one batch, and from 3.7 to 9.3% (n=7) among different batches. Several parameters affecting SBSE of eight target phenols including extraction time, stirring rate, sample pH, ionic strength, desorption solvent and desorption time were investigated. Under the optimal experimental conditions, the limits of detection (LODs, S/N=3) were found to be in the range of 0.08-0.30 μg/L. The linear range was 0.25-500 μg/L for 2-nitrophenol, 0.5-500 μg/L for phenol, 2-chlorophenol, 4-nitrophenol as well as 2,4-dimethylphenol, and 1-500 μg/L for p-chloro-m-cresol, 2,4-dichlorophenol as well as 2,4,6-trichlorophenol, respectively. The intra-day relative standard deviations (RSDs) were in the range of 4.3-9.4% (n=7, c=2 μg/L) and the enrichment factors ranged from 64.9 to 145.6 fold (theoretical enrichment factor was 200-fold). Compared with commercial PDMS coated stir bar (Gerstel) and PEG coated stir bar (Gerstel), the prepared PDMS/CTFs stir bar showed better extraction efficiency for target phenol compounds. The proposed method was successfully applied to the analysis of phenols in environmental water samples and good relative recoveries were obtained with the spiking level at 2, 10, 50 μg/L, respectively. Topics: Chlorophenols; Chromatography, High Pressure Liquid; Dimethylpolysiloxanes; Hydrogen-Ion Concentration; Limit of Detection; Nitrophenols; Osmolar Concentration; Phenols; Reproducibility of Results; Rivers; Spectrophotometry, Ultraviolet; Triazines; Water Pollutants, Chemical | 2016 |
Optimization of a greener method for removal phenol species by cloud point extraction and spectrophotometry.
A greener method based on cloud point extraction was developed for removing phenol species including 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 4-nitrophenol (4-NP) in water samples by using the UV-Vis spectrophotometric method. The non-ionic surfactant DC193C was chosen as an extraction solvent due to its low water content in a surfactant rich phase and it is well-known as an environmentally-friendly solvent. The parameters affecting the extraction efficiency such as pH, temperature and incubation time, concentration of surfactant and salt, amount of surfactant and water content were evaluated and optimized. The proposed method was successfully applied for removing phenol species in real water samples. Topics: Chlorophenols; Green Chemistry Technology; Nitrophenols; Spectrophotometry; Surface-Active Agents; Water; Water Pollutants, Chemical; Water Purification | 2014 |
Method for analyte identification using isotachophoresis and a fluorescent carrier ampholyte assay.
We present a novel method for identification of unlabeled analytes using fluorescent carrier ampholytes and isotachophoresis (ITP). The method is based on previous work where we showed that the ITP displacement of carrier ampholytes can be used for detection of unlabeled (nonfluorescent) analytes. We here propose a signal analysis method based on integration of the associated fluorescent signal. We define a normalized signal integral which is equivalent to an accurate measure of the amount of carrier ampholytes which are focused between the leading electrolyte and the analyte. We show that this parameter can be related directly to analyte effective mobility. Using several well characterized analytes, we construct calibration curves relating effective mobility and carrier ampholyte displacement at two different leading electrolyte (LE) buffers. On the basis of these calibration curves, we demonstrate the extraction of fully ionized mobility and dissociation constant of 2-nitrophenol and 2,4,6-trichlorophenol from ITP experiments with fluorescent carrier ampholytes. This extraction is based on no a priori assumptions or knowledge of these two toxic chemicals. This technique allows simultaneous identification of multiple analytes by their physiochemical properties in a few minutes and with no sample preparation. Topics: Calibration; Chlorophenols; Electrophoresis; Fluorescence; Nitrophenols | 2010 |
Concurrent destruction strategy: NaNO2-catalyzed, trichlorophenol-coupled degradation of p-nitrophenol using molecular oxygen.
Oxidative degradation of p-nitrophenol (PNP) was investigated with NaNO(2) as the catalyst and dioxygen as the oxidizing agent in the presence of trichlorophenol (TCP). Although degradation of PNP alone was proved to be inefficient toward the NaNO(2)-mediated oxidative degradation system, when PNP in combination with TCP was used as the substrate, NaNO(2) showed relatively high catalytic activity for eradicating both PNP and TCP with molecular oxygen. Reaction conditions to the degradation system, e.g., temperatures, reaction time, pH, NaNO(2) and TCP concentrations were optimized. PNP could be highly efficiently degraded in the NaNO(2)/TCP/O(2) system (more than 99% removal for PNP) and the TOC removal of the mixture of PNP and TCP could reach 71% at 150 degrees C, 0.5 MPa oxygen pressure. Degradation products were determined, and 93% carbon atom was clarified. A plausible overall mechanism for the formation of active species is described, in which peroxylnitrite was believed to be a dominating active intermediate being responsible for destroying the substrates, PNP and TCP. The novel NaNO(2)-based concurrent oxidation system for PNP and TCP provides a potential application in treatment of multi-component industrial effluents. Topics: Catalysis; Chlorophenols; Hydrogen-Ion Concentration; Models, Chemical; Molecular Structure; Nitrophenols; Oxygen; Sodium Nitrite | 2009 |
A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101.
p-Nitrophenol (4-NP) is recognized as an environmental contaminant; it is used primarily for manufacturing medicines and pesticides. To date, several 4-NP-degrading bacteria have been isolated; however, the genetic information remains very limited. In this study, a novel 4-NP degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101, was identified and characterized. The deduced amino acid sequences of npcB, npcA, and npcC showed identity with phenol 2-hydroxylase component B (reductase, PheA2) of Geobacillus thermoglucosidasius A7 (32%), with 2,4,6-trichlorophenol monooxygenase (TcpA) of Ralstonia eutropha JMP134 (44%), and with hydroxyquinol 1,2-dioxygenase (ORF2) of Arthrobacter sp. strain BA-5-17 (76%), respectively. The npcB, npcA, and npcC genes were cloned into pET-17b to construct the respective expression vectors pETnpcB, pETnpcA, and pETnpcC. Conversion of 4-NP was observed when a mixture of crude cell extracts of Escherichia coli containing pETnpcB and pETnpcA was used in the experiment. The mixture converted 4-NP to hydroxyquinol and also converted 4-nitrocatechol (4-NCA) to hydroxyquinol. Furthermore, the crude cell extract of E. coli containing pETnpcC converted hydroxyquinol to maleylacetate. These results suggested that npcB and npcA encode the two-component 4-NP/4-NCA monooxygenase and that npcC encodes hydroxyquinol 1,2-dioxygenase. The npcA and npcC mutant strains, SDA1 and SDC1, completely lost the ability to grow on 4-NP as the sole carbon source. These results clearly indicated that the cloned npc genes play an essential role in 4-NP mineralization in R. opacus SAO101. Topics: Bacterial Proteins; Biodegradation, Environmental; Chlorophenols; Cloning, Molecular; Dioxygenases; Mixed Function Oxygenases; Molecular Sequence Data; Multigene Family; Nitrophenols; Oxygenases; Phylogeny; Polymerase Chain Reaction; Rhodococcus; Sequence Analysis, DNA | 2004 |