nitrophenols has been researched along with 1-amino-2-naphthol* in 1 studies
1 other study(ies) available for nitrophenols and 1-amino-2-naphthol
Article | Year |
---|---|
Coextraction of acidic, basic and amphiprotic pollutants using multiwalled carbon nanotubes/magnetite nanoparticles@polypyrrole composite.
The simultaneous extraction of acidic, basic and amphiprotic pollutants from various samples is a considerable and disputable concept in sample preparation strategies. In this study, for the first time, coextraction of acidic, basic and amphiprotic pollutants (polar and apolar) with multiwalled carbon nanotubes/Fe3O4@polypyrrole (MWCNTs/Fe3O4@PPy) composite based dispersive micro-solid phase extraction followed by high performance liquid chromatography-photo diode array detection was introduced. Firstly, the extraction efficiency of various magnetic nanosorbents including Fe3O4, MWCNTs/Fe3O4, graphene oxide/Fe3O4 (GO/Fe3O4), Fe3O4@PPy, MWCNTs/Fe3O4@PPy and GO/Fe3O4@PPy were compared. The results revealed that MWCNTs/Fe3O4@PPy nanocomposite has higher extraction efficiency for five selected model analytes (4-nitrophenol, 3-nitroaniline, 2,4-dichloroaniline, 3,4-dichloroaniline and 1-amino-2-naphthol). Box-Behnken design methodology combined with desirability function approach was applied to find out the optimal experimental conditions. The opted conditions were: pH of the sample, 8.2; sorbent amount, 12 mg; sorption time, 5.5 min; salt concentration, 14% w/w; type and volume of the eluent, 120 μL acetonitrile; elution time; 2 min. Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 0.1-0.25 μg L(-1) and 0.5-600 μg L(-1), respectively. The percent of extraction recovery and relative standard deviations (n=5) were in the range of 45.6-82.2 and 4.0-8.5, respectively. Ultimately, the applicability of this method was successfully confirmed by analyzing rain, snow and river water samples and satisfactory results were obtained. Topics: Aniline Compounds; Chromatography, High Pressure Liquid; Environmental Pollutants; Limit of Detection; Magnetite Nanoparticles; Nanotubes, Carbon; Naphthols; Nitrophenols; Polymers; Pyrroles; Solid Phase Extraction | 2015 |