nitrophenols has been researched along with 1-4-7-triazacyclononane* in 3 studies
3 other study(ies) available for nitrophenols and 1-4-7-triazacyclononane
Article | Year |
---|---|
Phosphodiester cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands bearing single alkyl guanidine pendants.
Three new metal-coordinating ligands, L(1)·4HCl [1-(2-guanidinoethyl)-1,4,7-triazacyclononane tetrahydrochloride], L(2)·4HCl [1-(3-guanidinopropyl)-1,4,7-triazacyclononane tetrahydrochloride], and L(3)·4HCl [1-(4-guanidinobutyl)-1,4,7-triazacyclononane tetrahydrochloride], have been prepared via the selective N-functionalization of 1,4,7-triazacyclononane (tacn) with ethylguanidine, propylguanidine, and butylguanidine pendants, respectively. Reaction of L(1)·4HCl with Cu(ClO(4))(2)·6H(2)O in basic aqueous solution led to the crystallization of a monohydroxo-bridged binuclear copper(II) complex, [Cu(2)L(1)(2)(μ-OH)](ClO(4))(3)·H(2)O (C1), while for L(2) and L(3), mononuclear complexes of composition [Cu(L(2)H)Cl(2)]Cl·(MeOH)(0.5)·(H(2)O)(0.5) (C2) and [Cu(L(3)H)Cl(2)]Cl·(DMF)(0.5)·(H(2)O)(0.5) (C3) were crystallized from methanol and DMF solutions, respectively. X-ray crystallography revealed that in addition to a tacn ring from L(1) ligand, each copper(II) center in C1 is coordinated to a neutral guanidine pendant. In contrast, the guanidinium pendants in C2 and C3 are protonated and extend away from the Cu(II)-tacn units. Complex C1 features a single μ-hydroxo bridge between the two copper(II) centers, which mediates strong antiferromagnetic coupling between the metal centers. Complexes C2 and C3 cleave two model phosphodiesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenylphosphate (HPNPP), more rapidly than C1, which displays similar reactivity to [Cu(tacn)(OH(2))(2)](2+). All three complexes cleave supercoiled plasmid DNA (pBR 322) at significantly faster rates than the corresponding bis(alkylguanidine) complexes and [Cu(tacn)(OH(2))(2)](2+). The high DNA cleavage rate for C1 {k(obs) = 1.30 (±0.01) × 10(-4) s(-1) vs 1.23 (±0.37) × 10(-5) s(-1) for [Cu(tacn)(OH(2))(2)](2+) and 1.58 (±0.05) × 10(-5) s(-1) for the corresponding bis(ethylguanidine) analogue} indicates that the coordinated guanidine group in C1 may be displaced to allow for substrate binding/activation. Comparison of the phosphate ester cleavage properties of complexes C1-C3 with those of related complexes suggests some degree of cooperativity between the Cu(II) centers and the guanidinium groups. Topics: Copper; Crystallography, X-Ray; DNA Cleavage; Guanidine; Heterocyclic Compounds; Hydrogen Bonding; Ligands; Magnetic Phenomena; Molecular Structure; Nitrophenols; Organometallic Compounds; Organophosphates | 2012 |
Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants.
Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA cleavage by C2 is twice that measured for [Cu(tacn)(OH2)2](2+), suggesting some degree of cooperativity between the copper center and guanidinium pendants in the hydrolysis of the phosphate ester linkages of DNA. A predominantly hydrolytic cleavage mechanism was confirmed through experiments performed either in the presence of various radical scavengers or under anaerobic conditions. Topics: Anaerobiosis; Copper; Crystallography, X-Ray; DNA Cleavage; Esters; Free Radical Scavengers; Guanidine; Heterocyclic Compounds; Hydrogen Bonding; Hydrogen-Ion Concentration; Indicators and Reagents; Kinetics; Ligands; Nitrophenols; Phosphates; Plasmids; Reactive Oxygen Species; Solutions; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared | 2011 |
Efficient plasmid DNA cleavage by copper(II) complexes of 1,4,7-triazacyclononane ligands featuring xylyl-linked guanidinium groups.
Three new metal-coordinating ligands, L(1), L(2), and L(3), have been prepared by appending o-, m-, and p-xylylguanidine pendants, respectively, to one of the nitrogen atoms of 1,4,7-triazacyclononane (tacn). The copper(II) complexes of these ligands are able to accelerate cleavage of the P-O bonds within the model phosphodiesters bis(p-nitrophenyl)phosphate (BNPP) and [2-(hydroxypropyl)-p-nitrophenyl]phosphate (HPNPP), as well as supercoiled pBR 322 plasmid DNA. Their reactivity toward BNPP and HPNPP is not significantly different from that of the nonguanidinylated analogues, [Cu(tacn)(OH(2))(2)](2+) and [Cu(1-benzyl-tacn)(OH(2))(2)](2+), but they cleave plasmid DNA at considerably faster rates than either of these two complexes. The complex of L(1), [Cu(L(1)H(+))(OH(2))(2)](3+), is the most active of the series, cleaving the supercoiled plasmid DNA (form I) to the relaxed circular form (form II) with a k(obs) value of (2.7 ± 0.3) × 10(-4) s(-1), which corresponds to a rate enhancement of 22- and 12-fold compared to those of [Cu(tacn)(OH(2))(2)](2+) and [Cu(1-benzyl-tacn)(OH(2))(2)](2+), respectively. Because of the relatively fast rate of plasmid DNA cleavage, an observed rate constant of (1.2 ± 0.5) × 10(-5) s(-1) for cleavage of form II DNA to form III was also able to be determined. The X-ray crystal structures of the copper(II) complexes of L(1) and L(3) show that the distorted square-pyramidal copper(II) coordination sphere is occupied by three nitrogen atoms from the tacn ring and two chloride ions. In both complexes, the protonated guanidinium pendants extend away from the metal and form hydrogen bonds with solvent molecules and counterions present in the crystal lattice. In the complex of L(1), the distance between the guanidinium group and the copper(II) center is similar to that separating the adjacent phosphodiester groups in DNA (ca. 6 Å). The overall geometry of the complex is also such that if the guanidinium group were to form charge-assisted hydrogen-bonding interactions with a phosphodiester group, a metal-bound hydroxide would be well-positioned to affect the nucleophilic attack on the neighboring phosphodiester linkage. The enhanced reactivity of the complex of L(1) at neutral pH appears to also be, in part, due to the relatively low pK(a) of 6.4 for one of the coordinated water molecules. Topics: Coordination Complexes; Copper; Crystallography, X-Ray; DNA; DNA Cleavage; DNA Restriction Enzymes; Electrophoresis, Agar Gel; Guanidine; Heterocyclic Compounds; Hydrogen Bonding; Hydrogen-Ion Concentration; Kinetics; Ligands; Models, Molecular; Molecular Mimicry; Nitrophenols; Nucleic Acid Conformation; Plasmids; Protons; Water | 2011 |