nitrogenase has been researched along with beryllium-fluoride* in 2 studies
2 other study(ies) available for nitrogenase and beryllium-fluoride
Article | Year |
---|---|
Transition state complexes of the Klebsiella pneumoniae nitrogenase proteins. Spectroscopic properties of aluminium fluoride-stabilized and beryllium fluoride-stabilized MgADP complexes reveal conformational differences of the Fe protein.
Stable inactive 2 : 1 complexes of the Klebsiella pneumoniae nitrogenase components (Kp2/Kp1) were prepared with ADP or the fluorescent ADP analogue, 2'(3')-O-[N-methylanthraniloyl] ADP and AlF(4)(-) or BeF(3)(-) ions. By analogy with published crystallographic data [Schindelin et al. (1997) Nature 387, 370-376)], we suggest that the metal fluoride ions replaced phosphate at the two ATP-binding sites of the iron protein, Kp2. The beryllium (BeF(x)) and aluminium (AlF(4)(-)) containing complexes are proposed to correspond to the ATP-bound state and the hydrolytic transition states, respectively, by analogy with the equivalent complexes of myosin [Fisher et al. (1995) Biochemistry 34, 8960-8972]. (31)P NMR spectroscopy showed that during the initial stages of complex formation, MgADP bound to the complexed Kp2 in a manner similar to that reported for isolated Kp2. This process was followed by a second step that caused broadening of the (31)P NMR signals and, in the case of the AlF4- complex, slow hydrolysis of some of the excess ADP to AMP and inorganic phosphate. The purified BeFx complex contained 3.8 +/- 0.1 MgADP per mol Kp1. With the AlF(4)(-) complex, MgAMP and adenosine (from MgAMP hydrolysis) replaced part of the bound MgADP although four AlF(4)(-) ions were retained, demonstrating that full occupancy by MgADP is not required for the stability of the complex. The fluorescence emission maximum of 2'(3')-O-[N-methylanthraniloyl] ADP was blue-shifted by 6-8 nm in both metal fluoride complexes and polarization was 6-9 times that of the free analogue. The fluorescence yield of bound 2'(3')-O-[N-methylanthraniloyl] ADP was enhanced by 40% in the AlF(4)(-) complex relative to the solvent but no increase in fluorescence was observed in the BeFx complex. Resonance energy transfer from conserved tyrosine residues located in proximity to the Kp2 nucleotide-binding pocket was marked in the AlF(4)(-) complex but minimal in the BeFx fluoride complex, illustrating a clear conformational difference in the Fe protein of the two complexes. Our data indicate that complex formation during the nitrogenase catalytic cycle is a multistep process involving at least four conformational states of Kp2: similar to the free Fe protein; as initially complexed with detectable (31)P NMR; as detected in mature complexes with no detectable (31)P NMR; in the AlF(4)(-) complex in which an altered tyrosine interaction permits resonance energy transfer with 2'(3')-O-[N-methylanthraniloy Topics: Adenosine Diphosphate; Adenosine Triphosphate; Aluminum Compounds; Beryllium; Binding Sites; Catalysis; Electron Transport; Fluorides; Iron; Klebsiella pneumoniae; Magnetic Resonance Spectroscopy; Models, Chemical; Nitrogenase; Protein Binding; Protein Conformation; Spectrophotometry; Time Factors; Ultraviolet Rays | 2001 |
Klebsiella pneumoniae nitrogenase: formation and stability of putative beryllium fluoride-ADP transition state complexes.
Incubation of the MoFe protein (Kp1) and Fe protein (Kp2), the component proteins of Klebsiella pneumoniae nitrogenase, with BeF(3)(-) and MgADP resulted in a progressive inhibition of nitrogenase activity. We have shown that at high Kp2 to Kp1 molar ratios this inhibition is due to the formation of an inactive complex with a stoichiometry corresponding to Kp1.{Kp2.(MgADP.BeFx)2}2. At lower Kp2:Kp1 ratios, an equilibrium between this 2:1 complex, the partially active 1:1 Kp1.Kp2.(MgADP. BeFx)2 complex, and active nitrogenase components was demonstrated. The inhibition was reversible since incubation of the 1:1 complex in the absence of MgADP and beryllium resulted in complete restoration of activity over 30 h. Under pseudo-first-order conditions with regard to nitrogenase components and MgADP, the kinetics of the rate of inhibition with increasing concentrations of BeF(3)(-) showed a square dependence on [BeF(3)(-)], consistent with the binding of two Be atoms by Kp2 in the complex. Analytical fplc gel filtration profiles of Kp1.Kp2 incubation mixtures at equilibrium resolved the 2:1 complex and the 1:1 complex from free Kp1. Deconvolution of the equilibrium profiles gave concentrations of the components allowing constants for their formation of 2.1 x 10(6) and 5.6 x 10(5) M(-1) to be calculated for the 1:1 and 2:1 complexes, respectively. When the active site concentration of the different species was taken into account, values for the two constants were the same, indicating the two binding sites for Kp2 are the same for Kp1 with one or both sites unoccupied. The value for K(1) we obtain from this study is comparable with the value derived from pre-steady-state studies of nitrogenase. Analysis of the elution profile obtained on gel filtration of a 1:1 ratio incubation mixture containing 20 microM nitrogenase components showed 97% of the Kp2 present initially to be complexed. These data provide the first unequivocal demonstration that Fe protein preparations which may contain up to 50% of a species of Fe protein defective in electron transfer is nevertheless fully competent in complex formation with MoFe protein. Topics: Adenosine Diphosphate; Beryllium; Binding Sites; Chromatography, Gel; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Stability; Fluorides; Kinetics; Klebsiella pneumoniae; Macromolecular Substances; Nitrogenase; Scattering, Radiation; Time Factors | 1999 |