nitrogen-dioxide and naphthalene

nitrogen-dioxide has been researched along with naphthalene* in 5 studies

Other Studies

5 other study(ies) available for nitrogen-dioxide and naphthalene

ArticleYear
2-Formylcinnamaldehyde formation yield from the OH radical-initiated reaction of naphthalene: effect of NO(2) concentration.
    Environmental science & technology, 2012, Aug-07, Volume: 46, Issue:15

    Naphthalene, typically the most abundant polycyclic aromatic hydrocarbon in the atmosphere, reacts with OH radicals by addition to form OH-naphthalene adducts. These OH-naphthalene adducts react with O(2) and NO(2), with the two reactions being of equal importance in air at an NO(2) mixing ratio of ∼60 ppbv. 2-Formylcinnamaldehyde [o-HC(O)C(6)H(4)CH═CHCHO] is a major product of the OH radical-initiated reaction of naphthalene, with a yield from the reaction of OH-naphthalene adducts with NO(2) of ∼56%. We have measured, on a relative basis, the formation yield of 2-formylcinnamaldehyde from the OH radical-initiated reaction of naphthalene in air at average NO(2) concentrations of 1.2 × 10(11), 1.44 × 10(12), and 1.44 × 10(13) molecules cm(-3) (mixing ratios of 0.005, 0.06, and 0.6 ppmv, respectively). These NO(2) concentrations cover the range of conditions corresponding to the OH-naphthalene adducts reacting ∼90% of the time with O(2) to ∼90% of the time with NO(2). The 2-formylcinnamaldehyde formation yield decreased with decreasing NO(2) concentration, and a yield from the OH-naphthalene adducts + O(2) reaction of 14% is obtained based on a 56% yield from the OH-naphthalene adducts + NO(2) reaction. Based on previous measurements of glyoxal and phthaldialdehyde from the naphthalene + OH reaction and literature data for the OH radical-initiated reactions of monocyclic aromatic hydrocarbons, the reactions of OH-naphthalene adducts with O(2) appear to differ significantly from the OH-monocyclic adduct + O(2) reactions.

    Topics: Gas Chromatography-Mass Spectrometry; Hydroxyl Radical; Naphthalenes; Nitrogen Dioxide; o-Phthalaldehyde

2012
The INDEX project: executive summary of a European Union project on indoor air pollutants.
    Allergy, 2008, Volume: 63, Issue:7

    The prevalence of allergies, asthma and other respiratory diseases in large populations has increased in recent decades. Among other factors, this phenomenon has been connected to adverse health effects of air pollution. Although some causal links between occupational exposures and their health effects are shown, still little is known about the health risks of lifelong exposure to indoor air pollutants. To assess the health risks of indoor air pollutants at prevailing concentration levels in Europe, the Joint Research Centre of the European Commission carried out a project called "Critical Appraisal of the Setting and Implementation of Indoor Exposure Limits in the EU" (INDEX). The aims of the project were: (1) to assess health risks of indoor-originated chemical pollutants that might be regulated in the EU and (2) to provide suggestions and recommendations on potential exposure limits or other risk management measures. The results of the INDEX project should contribute to the development of an EU strategy for the management of indoor air quality. The highest priority was given in this study to: formaldehyde, nitrogen dioxide, carbon monoxide, benzene and naphthalene. Exposure limits, recommendations and management options were also given to minimize the health risks for these compounds.

    Topics: Air Pollutants; Air Pollution, Indoor; Asthma; Benzene; Carbon Monoxide; Europe; European Union; Formaldehyde; Humans; Inhalation Exposure; Naphthalenes; Nitrogen Dioxide; Prevalence; Risk Assessment; Uncertainty

2008
Formation of nitro products from the gas-phase OH radical-initiated reactions of toluene, naphthalene, and biphenyl: effect of NO2 concentration.
    Environmental science & technology, 2008, Dec-15, Volume: 42, Issue:24

    Aromatic hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs), are released into the atmosphere principally during incomplete combustion and account for approximately 20% of nonmethane organic compounds in urban air. Reaction with OH radicals is the dominant atmospheric chemical loss process for aromatic hydrocarbons, leading mainly to the formation of an OH-aromatic or OH-PAH adduct which then reacts with O2 and/or NO2. For OH-monocyclic aromatic adducts, reaction with O2 dominates under atmospheric conditions; however, no data are available concerning the relative importance of reactions of OH-PAH adducts with O2 and NO2. We have measured formation yields of 3-nitrotoluene, 1- and 2-nitronaphthalene, and 3-nitrobiphenyl from the OH radical-initiated reactions of toluene, naphthalene, and biphenyl as a function of NO2 concentration. Our data showthatthe OH-aromatic adduct reactions with O2 and NO2 are of equal importance in the atmosphere at NO2 mixing ratios of approximately 3.3 ppmV for toluene, approximately 0.06 ppmV for naphthalene, and approximately 0.6 ppmV for biphenyl. Ambient concentrations of toluene, naphthalene, and biphenyl and their nitrated products measured at a site in the Los Angeles air basin are consistent with our laboratory measurements.

    Topics: Biphenyl Compounds; California; Gases; Hydrocarbons, Aromatic; Hydroxyl Radical; Naphthalenes; Nitro Compounds; Nitrogen Dioxide; Toluene

2008
Nitration and photonitration of naphthalene in aqueous systems.
    Environmental science & technology, 2005, Feb-15, Volume: 39, Issue:4

    The nitration of naphthalene was studied in aqueous solution to gain insight into the processes leading to the nitration of aromatic compounds in atmospheric hydrometeors. Reactants used were nitric acid, nitrogen dioxide and peroxynitrous acid in the dark, nitrate, and nitrite/nitrous acid under illumination. Naphthalene nitration can lead to two possible isomers, 1- and 2-nitronaphthalene. The former nitrocompound preferentially forms upon electrophilic processes and in the presence of nitrogen dioxide. Electrophilic nitration of naphthalene takes place in the presence of concentrated nitric acid, but nitration with nitric acid and oxidants (charge-transfer nitration) occurs under much milder conditions than with nitric acid alone. Charge-transfer nitration may have some environmental significance in particular cases, e.g. in acidic aerosols in the presence of HNO3 and oxidants. Nitrogen dioxide is thought to have a role in PAH nitration in the Antarctic particulate matter. In previous papers we have found that nitration induced by peroxynitrous acid, HOONO, can follow two pathways, the former electrophilic (leading for instance to the formation of nitrophenols from phenol) and the latter probably involving HOONO itself (accounting for the formation of nitrobenzene from benzene). In the case of naphthalene and HOONO the electrophilic pathway mainly leads to 1-nitronaphthalene, while the other one preferentially yields 2-nitronaphthalene. The nitration of naphthalene in the presence of nitrite/nitrous acid under irradiation leads to both nitroisomers in similar ratios, and the process is not inhibited by hydroxyl scavengers. This excludes nitrogen dioxide as reactive species for nitration and marks a difference with phenol photonitration and a similarity with the behavior of benzene under comparable conditions. Nitrite photochemistry (and nitrite-induced photonitration as well) is expected to be relevant in fog and cloudwater in polluted areas. An important difference with the gas-phase nitration is that the radicals OH and NO3 are unlikely to play a relevant role in the nitration of naphthalene in aqueous solution.

    Topics: Benzene; Hydroxyl Radical; Naphthalenes; Nitrates; Nitric Acid; Nitrites; Nitrogen Dioxide; Nitrous Acid; Oxidants; Peroxynitrous Acid; Phenol; Photochemistry; Time Factors; Water

2005
Oncogenic response of strain A/J mice to inhaled chemicals.
    Journal of toxicology and environmental health, 1986, Volume: 17, Issue:2-3

    Strain A/J mice were exposed by inhalation for 6 h/d, 5 d/wk, for 6 mo to carbon disulfide, 1,2-dibromoethane, ethylene oxide, naphthalene, nitrogen dioxide, or vinyl chloride. Significant increases in pulmonary adenoma formation were observed following exposure to 300 ppm carbon disulfide; 20 and 50 ppm 1,2-dibromoethane; 70 and 200 ppm ethylene oxide; 10 ppm nitrogen dioxide; and 50, 200, and 500 ppm vinyl chloride compared to control animals. Repeated studies with 1,2-dibromoethane, ethylene oxide, and vinyl chloride gave similarly significant results. Exposure of mice to 30 ppm naphthalene did not elicit a significant adenoma response. Histopathological examination of lungs from animals in these studies revealed multiple alveolar adenomas. Results from earlier studies with these chemicals, using strain A mice and Swiss mice, and bioassay information with rats and mice were compared with these data. These results provide further information for the validation of this in vivo model as a tool for predicting oncogenic potential following chemical exposure.

    Topics: Adenoma; Animals; Carbon Dioxide; Carcinogens; Ethylene Dibromide; Female; Lung Neoplasms; Male; Mice; Mice, Inbred A; Naphthalenes; Nitrogen Dioxide; Vinyl Chloride

1986