nitrogen-dioxide and hyponitrite

nitrogen-dioxide has been researched along with hyponitrite* in 2 studies

Other Studies

2 other study(ies) available for nitrogen-dioxide and hyponitrite

ArticleYear
A bridged di-iron porphyrin hyponitrite complex as a model for biological N2O production from hyponitrite.
    Nitric oxide : biology and chemistry, 2016, Jan-30, Volume: 52

    Heme-hyponitrites are intermediates that form at the bimetallic active sites of bacterial nitric oxide reductases. To probe a possible effect of the Fe-Fe distance on hyponitrite stability, we prepared a bridged bis-porphyrin Fe-hyponitrite compound, namely [(OEP-CH2)Fe]2(μ2,η(1),η(1)-ONNO). Its υNO of 992 cm(-1) (υ15NO of 976 cm(-1)) is close to the υNO of 983 cm(-1) reported previously by us for the crystallographically characterized [(OEP)Fe]2(μ2,η(1),η(1)-ONNO) compound. The bridged bis-porphyrin Fe-hyponitrite complex is unstable with respect to N2O production, supporting the role of the bis-Fe porphyrin system in hyponitrite conversion to N2O. The preparation and crystallographic determination of the bridging sulfato derivative is also reported.

    Topics: Metalloporphyrins; Models, Molecular; Molecular Structure; Nitrites; Nitrogen Dioxide

2016
Heme-copper assembly mediated reductive coupling of nitrogen monoxide (*NO).
    Journal of the American Chemical Society, 2009, Jan-21, Volume: 131, Issue:2

    A iron-dinitrosyl species ((6)L)Fe(NO)(2) (2), generated from nitrogen monoxide (*NO) binding to its related iron(II)-mononitrosyl complex ((6)L)Fe(NO) (1), efficiently effects reductive coupling of two *NO molecules to release nitrous oxide (N(2)O), when Cu(+) ion and 2 equiv acid are added; the heme/Cu product is [((6)L)Fe(III)...Cu(II)(D)](3+) (D = H(2)O or MeCN). In a control experiment where only ((6)L)Fe(NO)(2) (2) is exposed to 2 equiv acid, no UV-vis change is observed; upon warming, *NO((g)) is released and ((6)L)Fe(NO) is reformed. The copper ion complex within the (6)L ligand framework is required for the *NO coupling chemistry. In a further control experiment Cu(+) ion is added to ((6)L)Fe(NO)(2) without acid present, [((6)L)Fe(NO)...Cu(II)(NO(2)(-))](+) is obtained, with the amount of N(2)O((g)) released fitting with copper(I) ion promoted disproportionation chemistry, 3*NO + ligand-Cu(I) --> N(2)O + ligand-Cu(II)(NO(2)(-)). The chemical system described represents a (stoichiometric) functional model for heme/Cu protein nitric oxide reductase activity.

    Topics: Copper; Ferric Compounds; Heme; Nitric Oxide; Nitrites; Nitrogen Dioxide; Oxidation-Reduction

2009