nitrogen-dioxide and ethylbenzene

nitrogen-dioxide has been researched along with ethylbenzene* in 4 studies

Other Studies

4 other study(ies) available for nitrogen-dioxide and ethylbenzene

ArticleYear
An assessment of spatial distribution and atmospheric concentrations of ozone, nitrogen dioxide, sulfur dioxide, benzene, toluene, ethylbenzene, and xylenes: ozone formation potential and health risk estimation in Bolu city of Turkey.
    Environmental science and pollution research international, 2022, Volume: 29, Issue:35

    Atmospheric pollutants including ozone, nitrogen dioxide, sulfur dioxide, and BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds were evaluated concerning their spatial distribution, temporal variation, and health risk factor. Bolu plateau where sampling was performed has a densely populated city center, semi-rural areas, and forested areas. Additionally, the ozone formation potentials of BTEXs were calculated, and toluene was found to be the most important compound in ground level ozone formation. The spatial distribution of BTEXs and nitrogen dioxide pollution maps showed that their concentrations were higher around the major roads and city center, while rural-forested areas were found to be rich in ozone. BTEXs and nitrogen dioxide were found to have higher atmospheric concentrations in winter. That was mostly related to the source strength and low mixing height during that season. The average toluene to benzene ratios demonstrated that there was a significant influence of traffic emissions in the region. Although there was no significant change in sulfur dioxide concentrations in the summer and winter seasons of 2017, the differences in the spatial distribution showed that seasonal sources such as domestic heating and intensive outdoor barbecue cooking were effective in the atmospheric presence of this pollutant. The lifetime cancer risk through inhalation of benzene was found to be comparable with the limit value (1 × 10

    Topics: Air Pollutants; Benzene; Benzene Derivatives; Environmental Monitoring; Nitrogen Dioxide; Ozone; Sulfur Dioxide; Toluene; Turkey; Xylenes

2022
Vertical variation of PM
    Environmental pollution (Barking, Essex : 1987), 2018, Volume: 235

    Substantial efforts have been made in recent years to investigate the horizontal variability of air pollutants at regional and urban scales and epidemiological studies have taken advantage of resulting improvements in exposure assessment. On the contrary, only a few studies have investigated the vertical variability and their results are not consistent. In this study, a field experiment has been conducted to evaluate the variation of concentrations of different particle metrics and gaseous pollutants on the basis of floor height at a high rise building. Two 15-day monitoring campaigns were conducted in the urban area of Bologna, Northern Italy, one of the most polluted areas in Europe. Measurements sites were operated simultaneously at 2, 15, 26, 44 and 65 m a.g.l. Several particulate matter metrics including PM

    Topics: Air Pollution; Benzene; Benzene Derivatives; Environmental Monitoring; Housing; Humans; Italy; Nitrogen Dioxide; Particle Size; Seasons; Toluene; Xylenes

2018
Creating national air pollution models for population exposure assessment in Canada.
    Environmental health perspectives, 2011, Volume: 119, Issue:8

    Population exposure assessment methods that capture local-scale pollutant variability are needed for large-scale epidemiological studies and surveillance, policy, and regulatory purposes. Currently, such exposure methods are limited.. We created 2006 national pollutant models for fine particulate matter [PM with aerodynamic diameter ≤ 2.5 μm (PM2.5)], nitrogen dioxide (NO2), benzene, ethylbenzene, and 1,3-butadiene from routinely collected fixed-site monitoring data in Canada. In multiple regression models, we incorporated satellite estimates and geographic predictor variables to capture background and regional pollutant variation and used deterministic gradients to capture local-scale variation. The national NO2 and benzene models are evaluated with independent measurements from previous land use regression models that were conducted in seven Canadian cities. National models are applied to census block-face points, each of which represents the location of approximately 89 individuals, to produce estimates of population exposure.. The national NO2 model explained 73% of the variability in fixed-site monitor concentrations, PM2.5 46%, benzene 62%, ethylbenzene 67%, and 1,3-butadiene 68%. The NO2 model predicted, on average, 43% of the within-city variability in the independent NO2 data compared with 18% when using inverse distance weighting of fixed-site monitoring data. Benzene models performed poorly in predicting within-city benzene variability. Based on our national models, we estimated Canadian ambient annual average population-weighted exposures (in micrograms per cubic meter) of 8.39 for PM2.5, 23.37 for NO2, 1.04 for benzene, 0.63 for ethylbenzene, and 0.09 for 1,3-butadiene.. The national pollutant models created here improve exposure assessment compared with traditional monitor-based approaches by capturing both regional and local-scale pollution variation. Applying national models to routinely collected population location data can extend land use modeling techniques to population exposure assessment and to informing surveillance, policy, and regulation.

    Topics: Air Pollution; Benzene; Benzene Derivatives; Butadienes; Canada; Environmental Monitoring; Models, Theoretical; Nitrogen Dioxide

2011
Revealing source signatures in ambient BTEX concentrations.
    Environmental pollution (Barking, Essex : 1987), 2008, Volume: 156, Issue:2

    Management of ambient concentrations of Volatile Organic Compounds (VOCs) is essential for maintaining low ozone levels in urban areas where its formation is under a VOC-limited regime. The significant decrease in traffic-induced VOC emissions in many developed countries resulted in relatively comparable shares of traffic and non-traffic VOC emissions in urban airsheds. A key step for urban air quality management is allocating ambient VOC concentrations to their pertinent sources. This study presents an approach that can aid in identifying sources that contribute to observed BTEX concentrations in areas characterized by low BTEX concentrations, where traditional source apportionment techniques are not useful. Analysis of seasonal and diurnal variations of ambient BTEX concentrations from two monitoring stations located in distinct areas reveal the possibility to identify source categories. Specifically, the varying oxidation rates of airborne BTEX compounds are used to allocate contributions of traffic emissions and evaporative sources to observed BTEX concentrations.

    Topics: Air Pollutants; Benzene; Benzene Derivatives; Environmental Monitoring; Industrial Waste; Israel; Nitrogen Dioxide; Oxidants, Photochemical; Particle Size; Seasons; Time; Toluene; Vehicle Emissions; Xylenes

2008