nitrocefin and ceftiofur

nitrocefin has been researched along with ceftiofur* in 2 studies

Other Studies

2 other study(ies) available for nitrocefin and ceftiofur

ArticleYear
Characterization of Interactions between CTX-M-15 and Clavulanic Acid, Desfuroylceftiofur, Ceftiofur, Ampicillin, and Nitrocefin.
    International journal of molecular sciences, 2022, May-07, Volume: 23, Issue:9

    Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamases (ESBLs) are commonly associated with Gram-negative, hospital-acquired infections worldwide. Several beta-lactamase inhibitors, such as clavulanate, are used to inhibit the activity of these enzymes. To understand the mechanism of CTX-M-15 activity, we have determined the crystal structures of CTX-M-15 in complex with two specific classes of beta-lactam compounds, desfuroylceftiofur (DFC) and ampicillin, and an inhibitor, clavulanic acid. The crystal structures revealed that Ser70 and five other residues (Lys73, Tyr105, Glu166, Ser130, and Ser237) participate in catalysis and binding of those compounds. Based on analysis of steady-state kinetics, thermodynamic data, and molecular docking to both wild-type and S70A mutant structures, we determined that CTX-M-15 has a similar affinity for all beta-lactam compounds (ceftiofur, nitrocefin, DFC, and ampicillin), but with lower affinity for clavulanic acid. A catalytic mechanism for tested β-lactams and two-step inhibition mechanism of clavulanic acid were proposed. CTX-M-15 showed a higher activity toward DFC and nitrocefin, but significantly lower activity toward ampicillin and ceftiofur. The interaction between CTX-M-15 and both ampicillin and ceftiofur displayed a higher entropic but lower enthalpic effect, compared with DFC and nitrocefin. DFC, a metabolite of ceftiofur, displayed lower entropy and higher enthalpy than ceftiofur. This finding suggests that compounds containing amine moiety (e.g., ampicillin) and the furfural moiety (e.g., ceftiofur) could hinder the hydrolytic activity of CTX-M-15.

    Topics: Ampicillin; Anti-Bacterial Agents; beta-Lactamases; Cephalosporins; Clavulanic Acid; Microbial Sensitivity Tests; Molecular Docking Simulation

2022
Prior exposure of agriculture cephalosporin ceftiofur impaired conjugation of bla
    Journal of applied microbiology, 2020, Volume: 129, Issue:6

    Although a link between agricultural cephalosporin use and resistance in Salmonella has been demonstrated with the drug ceftiofur, the underlying mechanism of the correlation is unclear. This study investigated the impact of ceftiofur exposure in S. Saintpaul on ceftriaxone resistance, the gene expression and the conjugative transfer of the bla. Prior ceftiofur exposure caused a twofold increase in MIC from 1024 to 2048 µg ml. Prior exposure of S. Saintpaul to ceftiofur led to increased phenotypic resistance towards ceftriaxone while its ability to spread the cephalosporin resistance through conjugation, conversely, was impaired.. Findings from this study shed light on one possible mechanism in which agricultural cephalosporin exposure in Salmonella may subsequently impact clinical treatment. The finding that cephalosporin exposure in donors may hinder the subsequent spread of resistance instead of aiding it up was counter-intuitive.

    Topics: Agriculture; Animals; Anti-Bacterial Agents; Bacterial Proteins; Ceftriaxone; Cephalosporin Resistance; Cephalosporins; Conjugation, Genetic; Humans; Plasmids; Salmonella enterica

2020